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Preface

This book will be of interest to toxicologists, environmental chemists, risk assessors,
and others with an interest in the class of compounds known as perfluoroalkyl and
polyfluoroalkyl substances (PFASs). Most of the chapters are written for those
with a background in toxicology or chemistry, but background information and
references to review articles are included to provide a starting point for those
seeking additional information.

PFASs are commonly used in myriad industrial and commercial applications.
PFASs have provided industries and the general public with products of conve-
nience and safety, including oil- and water-repellent textiles and papers, coatings,
and fire-retardants. However, the unintended presence of PFAS in environmental
media, including biota, may have adverse effects on the health of exposed organ-
isms. Reports of cancers of the liver, pancreas, and testes in rodents exposed to
PFASs began appearing in the early 1990s; in the ensuing decades, the number of
publications related to PFAS toxicity has increased dramatically, revealing that
many of these substances are associated with toxicities in nearly every system stud-
ied. Although the potential health risks of these compounds have been assessed by
governmental agencies and organizations in many countries and health advisories
and recommendations have been established, many questions about PFAS toxicity
remain. Therefore, one goal of this book is to highlight what is known about the
toxicity of PFASs in experimental animal models and in exposed humans.

The chapters are organized by themes: human and wildlife exposure/body bur-
dens, reviews of metabolism and toxicological effects by organ system/develop-
mental stage, and aspects of PFAS toxicity that are driving PFAS research and
regulatory oversight.

Human and wildlife exposure/body burdens: Chap. 1 provides an excellent
and thorough summary of the major scientific advances related to PFASs research
over the past several decades, including an overview of the major toxicological
findings and considerations for evaluation of newly synthesized PFASs. Chapter 2
focuses on the current methods for the extraction and analysis of PFASs in
biological matrixes as well as their analytical challenges and new developments.

ED_002974_00000598-00006



vi Preface

Chapters 3 and 4 detail PFAS concentrations in human populations, mainly in the
USA; Chap. 3 focuses on the general human population whereas Chap. 4 high-
lights highly exposed human populations. Finally, the section on PFAS exposure
considerations concludes with concentrations in wildlife populations as well as
some of the challenges associated with measuring such compounds in wildlife
samples.

Reviews of metabolism and toxicological effects by organ system/developmental
stage: While not every single toxicological effect published will be captured by
these chapters, they cover the toxicological effects most commonly reported in
human and experimental animal studies. This section starts with two chapters
related to metabolism: Chap. 6 addresses the metabolism and pharmacokinetics of
PFASs in biological organisms and Chap. 7 focuses on the effects of PFAS exposure
on the metabolic processes themselves and how other effects may arise from toxi-
cological changes in these metabolic processes. Chapter § captures the major out-
comes that have been observed in studies of developmental exposure and Chaps. 9,
10, and 11 address toxicities to the three main controlling systems, neurotoxicity,
immunotoxicity, and endocrine toxicity, respectively. The last two chapters of this
section focus on broader toxicological issues. Chapter 12 details evidence of carci-
nogenicity in exposed organisms and Chap. 13 summarizes major epidemiological
findings in human populations. Together, these eight chapters capture the major
toxicological research associated with PFAS exposures.

Aspects of PFAS toxicity that are driving PFAS research and regulatory over-
sight: Chap. 14 synthesizes the data that were used to generate appropriate pharma-
cokinetic models to estimate human serum concentrations. Chapter 15 is actually a
case study of the use of two PFAS compounds in literature-based evaluations of
environmental contaminants and reflects an effort by the National Toxicology
Program’s Office of Health Assessment and Translation to increases its transpar-
ency in systematic review procedures of environmental contaminants. Chapter 16 is
a thorough compendium of the human health risk assessment associated with these
compounds and brings to light the need for effective communication among the
many groups affected by such assessments. Chapter 17 focuses on the available
toxicological data available for alternative fluorinated technologies that are being
explored to replace longer chain PFASs that have been associated with toxicological
effects. The final chapter summarizes the major points associated with PFAS toxi-
cology and includes recommendations for future research.

I thank and gratefully acknowledge the chapter authors. In spite of enormous
demands on his or her time, each author’s expertise, dedication and willingness to
participate in this project made this volume possible.

Greenville, NC, USA Jamie C. DeWitt
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Chapter 1
Perfluorinated Compounds: An Overview

Christopher Lau

Abstract This chapter provides an overarching introduction to the subject matter
of this volume: toxicology and health effects of perfluorinated compounds (PFCs).
It highlights briefly the unique chemical and physical properties of these chemicals,
their production history and commercial uses, and their environmental and health
concerns. The distribution profiles of these persistent contaminants in environmen-
tal media, wildlife and humans, as well as potential pathways of human exposure
are characterized. General toxicological features of these chemicals include major
species and sex differences in pharmacokinetic disposition among congeners with
different carbon-chain lengths and functional groups, and differential potencies
based on their primary mechanism of action, i.e., activation of the nuclear receptor
PPAR«. Current understanding of adverse effects associated with PFFC exposure
based on laboratory animal models include hepatotoxicity, tumor induction, devel-
opmental toxicity, immunotoxicity, neurotoxicity and endocrine disruption.
Associations and probable links between exposure to some PFCs and adverse health
outcomes in humans have been suggested by recent epidemiological reports.
Ecological and human health risk assessments of these chemicals are still in their
infancy. Each of these sub-topics will be expanded into full discussion in subse-
quent chapters. Importantly, a new generation of fluorinated chemicals has already
emerged in commerce, with little information regarding their environmental fate
and distribution as well as potential health effects. Materials presented in this
volume should provide a scientific basis to inform the design of safe replacement

Disclaimer This chapter has been reviewed by the National Health and Environmental Effects
Research Laboratory, U.S. Environmental Protection Agency, and approved for publication.
Approval does not signify that the contents necessarily reflect the views and policies of the Agency,
nor does the mention of trade names of commercial products constitute endorsement or recom-
mendation for use.

C. Lau, Ph.D. (<)

Developmental Toxicology Branch, Toxicity Assessment Division,

National Health and Environmental Effects Research Laboratory,

Office of Research and Development, US Environmental Protection Agency,

Mail Drop B105-04, 109 T.W. Alexander Dr, Research Triangle Park, NC 27711, USA
e-mail: lau.christopher@epa.gov

© Springer International Publishing Switzerland 2015 1
J.C. DeWitt (ed.), Toxicological Effects of Perfluoroalkyl

and Polyfluoroalkyl Substances, Molecular and Integrative Toxicology,
DOI10.1007/978-3-319-15518-0_1
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2 C. Lau

products for the current crop of perfluorinated chemicals that promises to be less
persistent and prevalent in the environment.

Keywords Perfluoroalkyl acids * Toxicology ¢ Health effects ¢« Epidemiology e
Overview

The topic of “Perfluorinated Chemicals” (PFCs) has appeared with increasing
frequency in popular news articles as well as research publications, particularly in
the fields of environmental sciences and toxicology. Indeed, before the turn of the
century, there were fewer than 300 research papers devoted to this subject; since
then, well over 3,000 papers have been published on these chemicals, describing
their worldwide detection in various environmental media, human populations and
wildlife animals, their toxicological characteristics and mechanisms of toxicity, as
well as their human and ecological health risks. In fact, several reviews have
appeared periodically during the past decade describing interim progress in specific
areas of resecarch (e.g., Kennedy et al. 2004; Beach et al. 2006; Lau et al. 2004,
2007; Houde et al. 2006, 2011; Kovarova and Svobodova 2008; Suji et al. 2009;
Olsen et al. 2009; Giesy et al. 2010; D’Hollander et al. 2010; Young and Mabury
2010; Lindstrom et al. 2011; Lau 2012; DeWitt et al. 2012; Post et al. 2012; Butt
et al. 2014; Ahrens and Bundschuh 2014; Chang et al. 2014). This volume summa-
rizes our current understanding of the adverse health effects of this interesting group
of chemicals. Many aspects of PFCs are described in detail, ranging from chemical
detection to exposure assessment, from pharmacokinetics to toxicity characteriza-
tion and associated modes of action, from epidemiological surveys to health risk
assessment, and from description of emerging replacement compounds to discussion
of research needs in the future. The goal of this introductory chapter is to provide
a brief overview of these aspects, highlighting the salient features of historical
discoveries about these chemicals and contemporary progress that has enhanced our
knowledge base. It is strongly recommended that readers consult individual chap-
ters for in-depth discussions of specific topics of interest covered in this volume.
So, what are these perfluorinated chemicals and why have they drawn such
immense interest for investigation? Buck et al. (2011) have published an excellent
review on the terminology, classification and origins of these chemicals, and only a
brief description is provided here. By definition, perfluorinated chemicals are
organic compounds where every hydrogen atom bonded with a carbon atom on the
alkane backbone is replaced by a fluorine atom. They may include perfluoroalkanes,
perfluoroalkyl acids (PFA As) and their precursors, and a number of surfactants and
fluoropolymers. Perfluoroalkanes are a unique group of chemicals used primarily
for clinical purposes in oxygenation and respiratory ventilation, but are not a subject
for discussion in this volume. Perfluoroalkyl acids found in the environment are
compounds with a perfluoroalkyl backbone (typically with carbon-chain lengths
ranging from 4 to 14) attached to a functional group. These chemicals are largely
man-made, as naturally occurring perfluorinated organic chemicals are rare (Key
et al. 1997). To date, three groups of PFAAs have been identified: perfluoroalkyl

ED_002974_00000598-00016



1 Perfluorinated Compounds: An Overview 3

sulfonates (PF'SAs), perfluorocarboxylates (PFCAs) and perfluoroalkyl phospho-
nates or phosphinates (PFPAs). While the first two groups have been detected
ubiquitously since the early 2000s, the presence of PFPAs was first reported by
D’eon et al. (2009) in Canadian surface waters and waste water treatment plants,
and subsequently by Busch et al. (2010) in landfill leachates in Germany, Esparza
et al. (2011) in water and sludge in the Netherlands, and Liu et al. (2013) in sewage
sludge in China, suggesting their wide distribution, similar to that seen with PFSAs
and PFCAs. Little is known about the toxicity of PFPAs except their pharmacokinetic
profiles in the rat (D’eon and Mabury 2010) and a preliminary report on their devel-
opmental toxicity in mice (Tatum-Gibbs et al. 2010). Thus, an in-depth description
of their potential adverse effects awaits additional investigation. Fluoropolymers
and PFA A derivatives (such as alcohols, amides and esters for PFSAs, and telomer
alcohols (TAs) and polyfluoroalkyl phosphates (PAPs) for PFCAs) are known to be
degraded or metabolized to PFAAs as terminal products; hence, for intent and pur-
pose, the focus of discussion regarding adverse health effects of perfluorinated
chemicals in this volume is limited to PISAs and PFCAs. However, although they
have received less attention, several PFAA precursors such as N-ethyl-N-(2-
hydroxyethyl)-perfluorooctanesulfonamide (N-EtFOSE; Berthiaume and Wallace
2002; Lau et al. 2003; Xie et al. 2009), 4:2, 6:2, 8:2 and 10:2 telomer alcohols
(Kudo et al. 2005; Mylchreest et al. 2003; Phillips et al. 2007; Andersen et al. 2008;
Fasano et al. 2009; Anand et al. 2012; Serex et al. 2014) and polyfluoroalkyl phos-
phate esters (D’eon and Mabury 20114, b; Rosenmai et al. 2013; Rand and Mabury
2014) have been included in toxicological evaluations.

The physical and chemical properties of PFAAs, their industrial applications and
production history, and their fate and transport have been well described by Kissa
(2001), Prevedouros et al. (2006), and Wang et al. (2014a, b). In brief, these chemi-
cals are highly stable even at high temperature, nonflammable, not readily degraded
by strong acids, alkalis or oxidizing agents, and not subject to photolysis. The
unique stability of these chemicals thus renders them practically nonbiodegradable
and very persistent in the environment. Unlike other persistent organic pollutants
(such as dioxin and PCB) that are lipophilic, PFAAs are both hydrophobic and lipo-
phobic, which lends them most useful as surfactants and polymers. By attaching a
charged moiety such as carboxylate, sulfonate, or phosphonate/phosphinate to the
perfluoroalkane chain, the molecule becomes more water soluble. While all ampho-
teric PFAAs of various chain lengths share some surfactant properties, the eight-
carbon chemicals perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA)
have been most effective in commercial uses. Indeed, over 200 industrial and con-
sumer applications are known for these chemicals, ranging from water-, soil-, and
stain-resistant coatings for textiles, leather, and carpets, to grease-proof paper prod-
ucts for food contact, floor polishes, insecticide formulations, ski wax, electroplat-
ing, and electronic etching bath surfactants, photographic emulsifier, aviation
hydraulic fluids, and fire-fighting foams (Renner 2001).

Perfluoroalkyl acids are fairly contemporary chemicals, being in large-scale
production only since the 1950s. Two methods of production have dominated the
industrial manufacturing process: electrochemical fluorination (ECF) and telomer-
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4 C. Lau

ization. The ECF process is based on the reaction between organic feedstocks such
as 1-octanesulfonyl fluoride (C3H7;SO,F) and anhydrous hydrogen fluoride, which
is fueled by an electrical current, causing the hydrogen atoms on the carbon
backbone to be replaced by fluorine atoms, with resultant products such as perfluo-
rooctane sulfonyl fluoride (POSFE, G (;SO,IF). During this process, fragmentation
and rearrangement of the alkane backbone can occur, producing fluorinated organic
molecules of various carbon-chain lengths and a mixture of linear, branched and
cyclic isomers of the chemical. Typically 70-85 % of the mixture is linear and
15-30 % is a mixture of branched isomers. The telomerization process involves a
telogen such as pentafluoroethyl iodide (F(CF,CI;)I) that polymerizes with tetra-
fluorcethylene (CF,CE,) to form telomer intermediates of desired carbon chain
length; the resultant telomer iodides are then reacted with ethylene via free radical
addition. The telomerization process thus yields straight-chain alcohols (F(CEF,CI,)
nCH,CH,OH) that can be converted into final products for commercial application.
Both linear and branched isomers of PFA As have been detected in the environment,
in humans and wildlife (De Silva and Mabury 2009; De Silva et al. 2009; Benskin
et al. 2010a, b; Beesoon et al. 2011; Zhang et al. 2013a). Their comparative toxici-
ties have not been investigated systematically. The branched isomers are generally
eliminated at a faster rate than the linear isomers (Benskin et al. 2009a, b), but the
linear precursor perfluorooctane sulfonamide (PFOSA) has been shown to be elimi-
nated faster than the branched precursor (Zhang et al. 2013b).

Production of PFAAs has been scaled up steadily since the 1950s; for instance,
an estimate of 3,500 tonnes of PFSA was produced in 2000, and an annual average
of PFCA production was estimated between 150 and 350 tonnes in the past 60 years
(Lau et al. 2004; Wang et al. 2014a). Production of PFOS and POSF-related chem-
istry was phased out by 3M in 2002, and DuPont ceased production of PFOA by the
end of 2013. In the interim, shorter chain PFA As such as perfluorobutane sulfonate
(PFBS) and perfluorchexanoic acid (PI'HxA) have largely taken the place of the
eight-carbon chemicals in U.S. commerce. Since 2002, production of some of the
PFAAs has gradually been shifted from North America and Europe to other devel-
oping countries; China in particular has scaled up production of PFOS considerably
from an estimate of 30 tonnes per year in 2001 to an average of 250-300 tonnes per
year since 2006 (Lim et al. 2011; Wang et al. 2014a, b). A substantial amount of
PFAAs is emitted to the environment, either directly as manufacturing by-products
or indirectly through degradation of precursor and intermediates materials (e.g.
POSF-based intermediates, TAs, PAPs, and fluoropolymers). These chemicals are
distributed globally, even to remote locales such as the Arctic and the Antarctic, by
atmospheric and/or oceanic transfers (Yamashita et al. 2008; Armitage et al. 2009;
Dreyer et al. 2009; Bengtson Nash et al. 2010; Young and Mabury 2010). PFAAs are
found in all environmental media: air, water, soil, sediment, sludge from waste
water treatment plants, biosolids for agricultural application, and house dust.
Because of the persistent nature of PFAAs, these emitled contaminants settled on
soils are transported to groundwater and surface water for consumption, and their
removal at waste water treatment plants is expensive and inefficient. Recent studies
have also demonstrated that PFAAs can be taken up into edible plants grown in
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1 Perfluorinated Compounds: An Overview 5

soils amended by biosolids derived from waste water treatment plants (Lechner and
Knapp 2011; Blaine et al. 2013, 2014). To a certain extent, once these anthropo-
genic chemicals are produced, they are essentially accumulated and re-circulated
through different environmental media. In general, the levels of PFA As detected are
higher in urban and industrial areas in developed countries than in rural and sparsely
populated locales (Kunacheva et al. 2012).

Giesy and Kannan (2001) were first to report the presence of PFAAs in wildlife
animal samples. Since then, a plethora of studies has documented the prevalence of
these chemicals in a wide variety of wildlife species including mammals, amphibi-
ans, reptiles, birds, fish, and a number of invertebrates in a wide range of locales in
North America, Europe and Asia. Several worldwide surveys of PFAAs in wildlife
have been conducted, and findings have been summarized periodically (Houde et al.
20006, 2011; Lau et al. 2007; Butt et al. 2010; Murakami et al. 201 1; Gebbink et al.
2011; Rigét et al. 2013). Generally, the levels of PFAAs detected in wildlife are
highest around industrialized areas, mirroring the environmental distribution of
these chemicals. However, it is notable that extensive contamination of wildlife has
occurred in remote locales including the Arctic (Butt et al. 2010; Rotander et al.
2012; Braune and Letcher 2013; Rigét et al. 2013). There were some uncertainties
regarding the potential for bioaccumulation and biomagnification of PFA As through
food webs (Conder et al. 2008; Xu et al. 2014), but recent studies have suggested
that PFCAs and PFSAs with perfluoroalkyl chain lengths shorter than C7 and C6
are not likely to bicaccumulate (Suja et al. 2009; Loi et al. 2011; Martin et al. 2013;
Naile et al. 2013; Hong et al. 2014).

The presence of organic fluoride in humans was first reported by Taves and
coworkers (Taves 1968; Shen and Taves 1974). These compounds were later identi-
fied as PFOS or PFOA (Taves et al. 1976; Ubel et al. 1980; Belisle 1981). The extent
of human exposure to these chemicals was not confirmed and elaborated upon
until the turn of the twenty-first century when significant advances in analytical
chemistry enabled routine detection of individual PFAAs in various biological and
environmental matrices in the sub-ppb range by high performance liquid or gas
chromatography followed by electrospray ionization tandem mass spectrometry
(HPLC-ES/MS/MS) (Hansen et al. 2001; Sottani and Minoia 2002; Martin et al.
2002; Hebert et al. 2002). Improvements of these analytical methods have contin-
ved in the past decade (reviews: Martin et al. 2004; Trojanowicz and Koc 2013;
Valsecchi et al. 2013). Equipped with such sensitive detection methods, a number of
biomonitoring surveys of PFAA production workers and individuals from specific
populations (Olsen et al. 2003a, b, ¢, 2004) revealed wide-spread presence of PFOS,
PFOA and related chemicals. These initial discoveries led to systematic surveys of
perfluorinated compounds in the general populations of industrialized countries in
North America, Europe and Asia (Lau et al. 2007). The National Health and
Nutrition Examination Survey (NHANES) conducted by the Centers for Disease
Control and Prevention in the U.S. provides perhaps the most comprehensive
description of serum PFAAs in the adult population across the country from 1999 to
the present. The changing trends of notable PFA As over the past decade in the U.S.
have been described by Kato et al. (2011). In brief, PFOS, PFOA, perfluorchexane
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6 C. Lau

sulfonate (PFHxS) and perfluorononanoic acid (PFNA) have been routinely detected
since 1999, with PFOS levels being by far the highest. Since, 3M ceased production
of POSF-related chemicals in 2002, a significant drop of PFOS levels (by about
two-thirds) was noted; in contrast, the levels of PFNA, though lowest among the
four PFAAs, have been on a steady rise, tripling during the past 10 years. Survey
results from other populations from Europe, Asia and Australia are in general
agreement with the NHANES findings (Kérrman et al. 2007; Fromme et al. 2009;
Zhang et al. 2010; Glynn et al. 2012; Okada et al. 2013; Yeung et al. 2013a, b; Toms
et al. 2014). However, several “hot spots™ have been identified where the areas were
known to be contaminated and levels of PFAAs in the local populations were
significantly elevated above those reported in the general population. These include,
for instance, Arnsburg, Germany in 2006, and in the U.S., mid-Ohio and West
Virginia areas in 2007, and Minnesota in 2008.

Pathways for human exposure to PFAAs have been explored actively and sum-
marized in several recent reviews (Fromme et al. 2009; D’Hollander et al. 2010;
Haug et al. 2011; Cornelis et al. 2012). Dietary intake (Tittlemier et al. 2007; Picé
et al. 2011; Domingo 2012; Klenow et al. 2013), migration from food package mate-
rials (Begley et al. 2005; Trier et al. 2011; Xu et al. 2013), drinking water (Rumsby
et al. 2009; Domingo et al. 2012; Post et al. 2013); indoor air and house dust (Shoeib
et al. 2005, 2011; Strynar and Lindstrom 2008; Liu et al. 2014), and consumer prod-
ucts (Vestergren et al. 2008; Trudel et al. 2008) are likely important routes of human
exposure. Among these, dietary intake has generally been considered the major
source of exposure, particularly through consumption of PFAA-contaminated fish
and seafood (Haug et al. 2010; Domingo et al. 2012), while exposure through con-
sumption of vegetables and beverages (such as cow milk and beer) is comparatively
low (Herzke et al. 2013; Barbarossa et al. 2014; Stahl et al. 2014).

Toxicological properties of PFAAs have been described in several reviews (Lau
et al. 2004, 2007; White et al. 2011; Mariussen 2012; Lau 2012; Dewitt et al. 2012;
Corsini et al. 2014). This chapter only provides an overarching description of these
characteristics, detailed accounts with specific relevant citations are furnished in the
ensuing chapters. In general, PFA As are well absorbed after oral ingestion, are not
metabolized, and are excreted primarily in urine and to a lesser extent in feces.
These chemicals have a high affinity for protein binding (e.g. serum albumin, fatty
acid binding proteins). PFAAs are distributed broadly among tissues (Kennedy
et al. 2004; Harris and Barton 2008), but with the exception of the short chain
chemicals (C6 or less), the chemicals are taken up and stored preferentially in the
liver. In fact, liver, kidney and blood compartments can account for greater than half
of the body burden of PFAAs. During pregnancy, these chemicals can cross the
placental barrier readily in both laboratory animals and humans, although the mater-
nal levels of PFAAs tend to be higher than those in the fetus (Thibodeaux et al.
2003; Lau et al. 2003; Midasch et al. 2007; Glynn et al. 2012). After birth, lacta-
tional transfer of PFAAs has been well documented (Kérrman et al. 2007; Fenton
et al. 2009; Liu et al. 2011).

In laboratory studies, the adverse effects of PFAAs vary widely based on their
perfluoroalkyl chain lengths and functional groups, as well as species and sex
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differences of the animal models (Kudo and Kawashima 2003; Lau et al. 2007; Lau
2012). Two prominent features must be considered to account for these variations:
differential pharmacokinetic disposition and potency among the homologues of
these chemicals. As illustrated in Table 1.1, the serum elimination half-lives of
PFAAs can vary greatly, from hours to years. Typically, chemicals with long per-
fluoroalkyl chain lengths (>C4 for PFSAs, >C6 for PFCAs) are much more persis-
tent in the body; half-lives tend to increase from rodents (hours-days) to monkey
(days-months) and to humans (months-years), and those in males are slightly longer
than in females (with the exaggerated exceptions of PFOA and PFNA in rat where
tremendous differences in t, between males and females were seen). Differential
renal reabsorption involving organic anion transporters likely contributes to these
varying pharmacokinetic profiles of PFAAs (Andersen et al. 2008; Weaver et al.
2010; Han et al. 2012). The response potency of individual PFAAs can also vary
significantly among chain lengths, between functional groups and target species
(Ishibashi et al. 2011; Wolf et al. 2012; Rosen et al. 2013; Buhrke et al. 2013)
(Table 1.2). Based on the experimental model of peroxisome proliferator-activated
receptor-alpha (PPARa) activation in transfected COS-1 cells, Wolf et al. (2008,
2012) surmised that (a) PFAAs of increasing chain lengths induced increasing
activity of the mouse and human PPAR«, (b) PFCAs were stronger activators than
PFSAs, and (c) the mouse PPAR« appeared to be more sensitive to PFAAs than the
human PPARa. Hence, only nominal adverse effects were seen with PFBA in
rodents (Das et al. 2008; Butenhoff et al. 2012) compared to PFOA (Kennedy et al.
2004; Lau et al. 2006), in part because of the faster clearance rate of the former
homologue (hours vs. days) and the weaker potency in its effects.

Because multiple PFAAs are typically found in the environment, humans and
wildlife, their cumulative risks and potential interactions must be considered.
Several in vifro studies have addressed the combined effects of selected PFAAs
(Wei et al. 2009; Ding et al. 2013; Carr et al. 2013; Wolf et al. 2014). In general,
binary combinations of PFAAs behaved additively at low and moderate concentra-
tions, but this response might change into antagonism at very high concentrations.
Further investigation with a diverse set of PFAAs (different chain lengths and
functional groups) and confirmation of in vifro findings with in vivo studies are
needed to clarify this key issue.

The specific characteristics of individual toxicities associated with PFAA
exposure from various experimental models will be elaborated in great details in the
following chapters. Only the salient features of each notable adverse effect are
mentioned here. PFA As are not known to be genotoxic or mutagenic (Eriksen et al.
2010; Florentin et al. 2011; Jacquet et al. 2012; Butenhoff et al. 2014). Hepatic
effects are a sensitive hallmark response of PFAA exposure. Liver hypertrophy
associated with vacuole formation and peroxisome proliferation typically have been
observed when a significant body burden of PFAAs was achieved, particularly for
the more persistent and potent long-chain homologues. Correspondingly, transcrip-
tional activation of nuclear receptor (prominently PPARa)-related genes in the liver
was routinely detected. Hepatosteatosis was also a common feature of chronic
exposure o PFAAs. However, these effects were largely reversible upon cessation
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1 Perfluorinated Compounds: An Overview 9
Table 1.2 Relative response potency of various PFAAs

A. Animal models

CV-1 cells

COS-1 cells (mouse) Hepatocytes (mouse) (seal)

PENA (C9) PFOA (C8) PFOA (C8)
PFOA (C8) PFHxA (C6) PFHpA (C7)
PFUnDA (Cl11) PFDA (C10) PENA (C9)
PFHpA (C7) PENA (C9) PEPeA (C5)
PEDA (C10) PFHpA (C7) PEHxS (C6)
PFDoDA (C12) PFPeA (C5) PFHxA (C6)
PFHxA (C6) PFHXS (C6) PEDA (C10)
PFPeA (C5) PFBA (C4) PEBA (C4)
PFBA (C4) PFOS (C8) PFOS (C8)
PFHxS (C6) PFBS (C4) PFUnDA (C11)
PFOS (C8) PFUnDA (C11) PFDoDA (C12)
PFBS (C4) PFDoDA (C12) PEBS (C4)

B. Human models

COS-1 cells Hepatocytes HepG2 cells
PFOA (C8) PENA (C9) PFDoDA (C12)
PENA (C9) PEHpA (C7) PEDA (C10)
PFHpA (C7) PFHxS (C6) PENA (C9)
PFHxA (C6) PFHxA (C6) PFOA (C8)
PFPeA (C5) PFOA (C8) PFHpA (C7)
PFBA (C4) PFDA (C10) PFHxA (C6)
PFHXxS (C6) PFOS (C8) PFBA (C4)
PFUnDA (C11) PFBS (C4)

PEBS (C4) PFBA (C4)

PFOS (C8) PFPeA (C5)

PEDA (C10) PEDoDA (C12)

PFDoDA (C12) PEUnDA (C11)

Adapted from the following sources: COS-1 cells, Wolf et al. 2012; Hepatocytes, Rosen et al.
2013; CV-1 cells, Ishibashi et al. 2011; HepG2 cells, Buhrke et al. 2013)
The ranking is in descending order, with the most potent chemical on top of the list

of chemical treatment. Profound developmental toxicity has been described with
gestational and lactational exposure to PFOS, PFOA and PINA. Neonatal morbid-
ity and mortality were seen with exposure to high doses of these chemicals in
rodents, while growth deficits and developmental delays were noted in offspring
exposed to lower doses. Immunotoxicity of PFOS, PFOA and PFNA has been
demonstrated; these chemicals appear to suppress both acquired and innate immu-
nity in mice and compromise their immune responses mediated by T cells and B
cells. Both PFOA and PTOS have been shown to induce tumors in rodents and fish.
In particular, liver adenomas, pancreatic acinar cell tumors and testicular Leydig
cell adenomas have been detected in rats treated with PFOA chronically. This
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“tumor triad” profile is typically associated with the PPARa-mediated molecular
signaling pathway. Interestingly, liver tumors involving this mode of action have
been considered not to be relevant to humans (Corton et al. 2014).

Some endocrine disrupting effects have been attributed to PFAAs, most notably
induction of hypothyroxinemia and reduction of serum testosterone in rats, the latter
effect produced by PFOA was likely related to an elevation of hepatic aromatase
activity. The neurotoxic potential of PFAAs has been addressed only scantily.
Altered proliferation and differentiation of PC12 cells, altered synaptogenesis and
synaptic transmission in cultured hippocampal cells and induction of apoptosis in
cultured cerebellar cells by PFOS have been reported. Neonatal exposure to PFAAs
in mice leading to deranged behaviors at adult ages have also been described. In
contrast, in guideline tests for developmental neurotoxicity, neither PFOS nor
PIHxA exhibited any significant adverse effects. Recent preliminary studies have
suggested that developmental exposure to PFOA (particularly at low doses) might
lead to obesity in adult ages in mice and humans (Hines et al. 2009; Halldorsson
et al. 2012), but conflicting findings have also been reported (Ngo et al. 2014; Barry
et al. 2014). Clearly, the endocrine disrupting, neurotoxic, and obesogenic potentials
of PFA As will require substantial additional elucidation.

To date, activation of PPAR« is the only established mechanism of action for
PFAAs (Rosen et al. 2008; Ren et al. 2009). Other putative mechanisms for PFAAs
include gap junctional inhibition to disrupt cell-cell communication, mitochondrial
dysfunction, interference of protein binding, partitioning into lipid bilayers,
oxidative stress, altered calcium homeostasis, inappropriate activation of molecular
signals such as MAPK, ERK1/2, and NF-kB. However, these alternative candidates
lack direct or strong evidence to support a pathophysiological role in the multi-faceted
effects of PFAAs. Characterization of the modes of action for PFAA toxicities
remains an intriguing area of future investigation.

Prompted primarily by toxicological findings in laboratory animals, a flurry of
epidemiological reports have appeared in recent literature. These studies can be
grouped into four categories: biomonitoring of production workers, surveys of
highly exposed populations, nationwide cross-sectional studies, and individual case
studies. The levels of PFA As found in production workers typically are about 100
times higher than those detected in the general population (e.g., NHANES). The
health impacts of PFOS on workers have been carefully investigated by 3M, those
of PFOA have been tracked by 3M and DuPont, and a single study to date reported
the health status of PFNA production workers (Mundt et al. 2007). Significant
positive associations were noted between PFOS/PFOA levels and elevated serum
cholesterol, low density lipoproteins (LDL) and uric acid, and reduction of bilirubin
in these workers. The C8 Study evaluated the health status of 69,000 people (includ-
ing occupationally exposed workers) living near a fluoropolymer production plant
in West Virginia, whose drinking water was contaminated with PFOA. The median
level of PFOA in this cohort is about five times higher than that of the general popu-
lation (NHANES). Probable links were found between exposure to PFOA and
hypercholesterolemia, thyroid disease, pregnancy-induced hypertension, testicular
and kidney cancers, and ulcerative colitis. Data mining studies were conducted with
a number of surveys, including NHANES, Danish National Birth Cohort, Danish
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Cancer Registry, Norwegian Mother and Child Cohort, Avon Longitudinal Study of
Parents and Children, Taiwan Birth Panel and Birth Cohort in the Faroe Islands.
Serum levels of PFAAs were generally in the range of those reported by
NHANES. These cross-sectional studies essentially reflect a broad “‘snap-shot”
analysis of representative populations. By and large, the positive associations
between PFAA exposure and the adverse health outcomes were marginal and
somewhat inconsistent. These included increased serum cholesterol, LDL and uric
acid, thyroid, cardiovascular and kidney diseases, altered liver enzyme activities,
lengthened time-to-pregnancy, early onset of menopause, low birth weight and
small size of newborns, attention deficit hyperactivity disorder, reduced immune
responses in children and delays in age of menarche. Individual case studies were
based on regional hospitals and clinics in U.S., European and Asian countries, and
findings are generally in line with those reported in the cross-sectional studies with
larger cohorts. From these epidemiological investigations, the strongest and most
consistent associations between PFAA exposure and adverse health effects in
humans are elevated serum cholesterol, LDL and uric acid, suggesting metabolic
disorders. This finding is not surprising as PFA As were once referred to as “synthetic
fatty acids™, and their potential competition with the endogenous long-chain fatty
acids for interactions with metabolic sensors such as hepatic nuclear receptors is
entirely plausible. Paradoxically, reductions of serum cholesterol and triglycerides
are the prevailing findings from PFAA studies with rodents, which are opposite in
direction from the human scenarios. A better understanding of the fundamental
differences in intermediary metabolism between rodents and humans is needed to
resolve these apparently conflicting observations.

Only a few concerted efforts have been undertaken to date toward human health
risk assessments of PFA As as a group (So et al. 2006; Zhao et al. 2011; Borg et al.
2013). Toward that end, Scialli et al. (2007) and Peters and Gonzalez (2011) have
expressed caution regarding the use of the toxic equivalency factor (TEF) approach
for the combined risk assessment of PFAAs. On the other hand, risk assessments of
PFOA in the general population (Butenhoff et al. 2004; Post et al. 2012) as well as
in specific population at highly contaminated areas (Wilhelm et al. 2008) have been
published. A similar assessment on the health impacts of PFOS was provided by
Saikat et al. (2013). Yang et al. (2014) recently described the development of criteria
for protection of aquatic life from PFFOS and PFOA. In addition, regulatory agencies
in the U.S. and Europe have issued health advisories on tolerable daily intake (TDI)
of PFOS and PFOA in food (by European Food Safety Authority, UK Committee on
Toxicity in Food, Consumer Products and the Environment, and German Federal
Institute for Risk Assessment) and in drinking water (by U.S. Environmental
Protection Agency, Minnesota Department of Health, and New Jersey Department
of Environmental Protection); while PFOS was listed in Annex B of the Stockholm
Convention on Persistent Organic Pollutants in 2009. Sall, many challenges remain
for human and ecological health risk assessment of PFCs. (a) There is a slew of
poly- and perfluorinated chemicals in the environment- PFAAs and their precursors-
and various related fluorinated chemicals that are only beginning to be identified;
their aggregate risks must be considered. Limited information thus far on the
additive effects of PFAA mixtures at low levels (i.e. environmental ranges) is
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encouraging for modeling their complex interactions. (b) The pharmacokinetic
profiles of PFCs (where information is available) vary greatly between species, with
humans apparently at the extreme end of the spectrum; these different parameters
may lead to variable and unpredicted body burdens of the chemicals. (c) Modes of
action for apical toxicity endpoints may vary among PFAAs and between species
(e.g. rodents vs. humans). Extrapolation of toxicity data from animal studies to
humans (or other ecological species) must take into account the variables associated
with toxicokinetics and toxicodynamics. A dosimetric anchoring approach recently
advocated by Wambaugh et al. (2013) may be instrumental in addressing some of
these issues. (d) Supporting epidemiological findings thus far indicate mostly asso-
ciations between PFAA exposure and human health risks. An improved understand-
ing of the biological and physiological underpinnings that drive these associations
are needed to support the conclusions drawn from these findings.

Concerted research efforts by environmental chemists, ecologists, toxicologists
and epidemiologists have provided a wealth of information on perfluorinated chem-
icals in the past 15 years. Our understanding of exposure sources, fate and transport,
exposure profiles and pathways, adverse effects in laboratory animals and untoward
health outcomes in humans has been greatly improved. However, in common with
many scientific pursuits, novel discoveries often lead to additional queries that
require further investigation. This axiom certainly applies to PFC research. There
are still many lingering issues regarding the health effects of these chemicals, fore-
most of which are (a) the biological basis that accounts for the extraordinary persis-
tence of PFAAs in humans (with half-life estimates in months to years), (b) the
extrapolation of toxicity findings from animal studies to human health risks, and (c)
the potential hazards of PFAA replacement chemicals. Improved insights into the
mechanisms of PFAA toxicity (beyond PPAR« activation) will reduce the uncer-
tainties of cross species extrapolation (for example, induction of liver tumors by
PFOA via PPAR« activation in rodents that is unlikely in humans, vide supra). After
production of PFOS, and more recently, PFOA by the major manufacturers ceased,
a host of replacement compounds have emerged, which are typically polyfluori-
nated rather than perfluorinated, or have a carbon backbone with ether linkages
(Wang et al. 2013). With the exception of one compound, ADONA (Gordon 2011),
very little is known about the health safety of these new replacement chemicals.
Indeed, Scheringer and colleagues (2014) have recently issued a “Helsinggr
Statement” on poly- and perfluorinated alkyl substances, in which these scientists
outlined their concerns about continued development of these chemicals. Perhaps
the manufacturers, environmental scientists, risk assessors and managers, as well as
the general public should well heed their sentiment.
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Chapter 2
Analysis of PFASs in Biological Tissues
and Fluids

Sonia Dagnino

Abstract In order to determine the toxicology and health effects on humans and
wildlife of per- and polyfluorinated substances (PFASs), it is critical to develop
rapid, accurate and sensitive methods for their analysis in biological tissues and
fluids. In the past few years, extraction and analytical methods have been developed
to allow their detection in very complex matrices and at very low levels. Biological
tissues and fluids include: whole blood, serum, urine, feces, sweat, nails as well as
organs: liver, kidneys and more. Although liquid chromatography coupled with
mass spectrometry has been the most prevalent method over the past decade, other
techniques can be applied, particularly for the detection and discovery of newly
developed fluorinated materials. This chapter will review current methods for the
extraction and analysis of PFASs in biological matrixes as well as their analytical
challenges and new developments.
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FTCA Fluorotelomer carboxylate
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LOD Limit of detection

LOQ Limit of quantification

MS Mass spectrometry

MTBE Methyltert-butyl ether

N-ethyl FOSA N-Ethylperfluorooctanesulfonamide
N-ethyl FOSE N-Ethylperfluorooctanesulfonamidoethanol
N-ethyl PFOSA N-Ethylperfluorooctanesulfonamide
N-methyl FOSA N-Methylperfluorooctanesulfonamide
N-methyl FOSE N-Methylperfluorooctanesulfonamidoethanol
N,N-diethyl PFOSA  N,N-Diethylperfluorooctanesulfonamide
PAP Polyfluoroalkyl phosphate esthers
PFAS Per and Polyfluoroalkyl substances
PAP Polyfluoroalkyl phosphate esthers
PFBA Perfluorobutanoic acid

PFBS Perfluorobutanesulfonate

PICA Perfluorocarboxylic acids

PFDA Perfluorodecanoic acid

PFDoDA Perfluorododecanoic acid

PIFDS Perfluorodecanesulfonate

PFHpA Perfluoroheptanoic acid

PFHxA Perfluorohexanoic acid

PFHxDA Perfluorohexadecanoic acid

PFHxS Perfluorohexanesulfonic acid

PENA Perfluorononanoic acid

PFOA Perfluorooctanoic acid

PFOS Perfluorooctanesulfonic acid

PFOSA Perfluorooctanesulfonamide

PFPA Perfluorinated phosphonic acids
PFPeA Perfluoropentanoic acid

PFSA Perfluorosulfonic acids

PFTeDA Perfluorotetradecanoic acid

PFUnDA Perfluoroundecanoic acid

QqQ Triple quadrupole

QTOF Quadrupole time-of-flight

SAX Strong ion exchange

SPE Solid phase extraction

TBA Tetrabutylammonium hydrogen sulfate
TFC Turbolent flow chromatography
THPFOS tetrahydroperfluorooctanesulfonate
TOF Time-of-flight

UPLC Ultra performance liquid chromatography
WAX Weak anion exchange
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2.1 Introduction

In 1968, Taves was the first to report organic fluorine in human serum using nuclear
magnetic resonance (Taves 1968). These pioneer studies, led to an increasing con-
cern over the need to identify and measure perfluorinated materials in biological
tissues and fluids. The advances in analytical instramentation, particularly the intro-
duction of Liquid Chromatography-Mass Spectrometry (LC-MS), has allowed the
development of methods for the detection of perfluorinated compounds in complex
matrices such as biological tissues and fluids. The extraction and analysis of PFAS
in these tissues is essential for the understanding of their toxicity and modes of
actions. Studies on human biomonitoring have often focused on the analysis of
whole blood, serum or milk. The development of sensitive methods for the analysis
of these fluids has allowed to correlate PFAS levels to health effects, such as birth
defects, immumotoxicity, cancer and others (Fei et al. 2007; Granum et al. 2013;
Klaunig et al. 2012; Nelson et al. 2010). Recently, other methods have been devel-
oped to allow the biomonitoring with non-invasive sampling by analyzing PFASs in
nails, hair and urine. These malrices are interesting as they are easier to obtain,
especially for sensitive population such as infants and children. Moreover, the anal-
ysis has often been focusing on historical PFASs, such as perfluorooctanoic acid
(PFOA) and perfluorcoctanoic sulfonic acid (PFOS). New methods are being devel-
oped for the analysis of other classes of PFASs such as: fluorotelomer alcohols
(FTOHs), polyfluoralkyls esthers (PAPs) and their metabolites.

2.2 Challenges for the Analysis of Per- and Polyfluorinated
Compounds

Fluorine is an element of the periodic table that has special properties which con-
tribute to the characterization of perfluoroalkyl and polyfluoroalkyl substances
(PFASs). The relative atomic mass of fluorine is 18.9984 u. It is less than the unit
which means that fluorine has a negative mass defect which is defined as the differ-
ence between the nominal mass of an atom and its accurate mass based on 2C as
12.0000 (Sparkman 2002), as shown in Fig. 2.1. In the case of Fluorine, this differ-
ence is negative whereas in the case of hydrogen, the mass is larger than the unit
(1.008 Da). Highly fluorinated compounds will therefore have lower monoisotopic
masses than their respective nominal mass, in respect to compounds with only C-H
bonds. This means, for instance, that PFOA, which has a nominal mass of 413 Da,
has in fact an exact mass of 412.9664 (anion). These properties can be very useful
for the identification of PFASs with high resolution instruments capable of measur-
ing Monoisotopic mass.

On the contrary to other organohalogens, Fluorine is a monoisotopic element.
Thus, fluoro-organic compounds do not often offer characteristic isotopic patierns
in mass spectrometry, which is one of the disadvantages of Fluorine. Properties of
Fluorine related to its ionic interaction result in the bond between carbon atoms and
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Fig. 2.1 Mass defect of common elements and halogens, the mass defect is calculated relative to
the mass of carbon 12 equals 12.000

Table 2.1 Experimental aqueous solubility of selected per and polyfluorinated compounds with
different carbon chain length and functional groups

Number of fluorinated
Name carbons Functional group Log AqgS (mg/L) at 25 °C®
PFOA 8 -COOH —2.02
PFDA 10 -COOH -2.29
4:2 FTOH 4 -OH 2.99
6:2 FTOH 6 -OH 1.27
8:2 FTOH 8 -OH -0.83
10:2 FTOH 10 -OH -1.96
MeFOSE 3 -SO,N-C,H,OH -0.09
EtFOSE 8 -SO;N-C,H,OH -0.05

“LogAqS are reported from Bhhatarai and Gramatica (2011)

fluorine being considered the strongest single bond in organic compound chemistry
(Blanksby and Ellison 2003). This peculiarity is reflected in the great stability and
persistence of PFASs in their chemical applications but also in humans and the
environment. The unicity of fluorine also contributes to the partitioning characteris-
tics of perfluorinated compounds, which can be both hydro and lipophilic and have
very different aqueous solubility depending on molecule length, and which func-
tional group is attached to the molecule as illustrated in Table 2.1.

Challenges with the reliability and quality of PFASs analysis have been debated
since the early 2000s (Martin et al. 2004). PFASs are man-made chemicals that can
be produced by two methods: electrochemical fluorination and telomerization.
Electrochemical fluorination results in the production of various carbon chain length
PFASs and a mixture of linear, branched and cyclic isomers. Telomerization
produces straight — chain telomer alcohols that can be converted into final products
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(Lehmler 2005). These two methods produce PFASs mixtures that are composed of
a family of target compounds as well as by-products of various chain lengths and
isomers, which have the possibility to introduce a bias in the analysis. Although the
impurity of the standards can be overcome by proper analytical methods and error
adjustments, bias induced by presence of different isomeric composition cannot
easily be avoided or estimated. This bias is introduced by the possibility of different
ionization capacities of each isomer as well as their potential different fragmenta-
tion pattern. Uncertainty due to isomers can be overcome by isomeric profiling of
standards and samples, which has been proven in recent work to be useful for a
more precise quantification of PFOA and PTOS, and interesting regarding their tox-
icity evaluation (Zhang et al. 2014).

When dealing with analysis in biological tissues and fluids, one must consider
the uncertainties due to the effects of the matrix on the detection with mass spec-
trometry techniques. An example is the well-known interference between PFOS and
taurodeoxycholic acid (TDCA) in biological samples. TDCA is a bile salt that has
been reported in the liver, bile tissues, and also serum and milk (Hansen et al. 2001;
Keller et al. 2010; Reiner et al. 2012). TDCA and PFOS have the same unit mass of
499, and both contain a sulfonate group, that delivers the same transition 499-80 in
classic LC-MS methods. This transition is often used as quantifier fragment for
PFOS. Therefore, co-elution, especially in the presence of high concentrations of
TDCA, can lead to overestimation at the m/z 499-80 transition. This interference
has been overcome by using transition 499-99 which is unique to PFOS, but also by
introducing purification techniques that eliminate TDCA from the sample. This
interference can also be avoided by the use of accurate mass instrumentation. The
Monoisotopic masses of PFOS and TDCA are 499.9375 and 499.2968 respectively,
differing by 1,281.64 ppm, which makes it impossible to mistake one from the other
with high resolution detection.

The interesting industrial properties of PFASs justify their presence in multiple
applications. Unfortunately, this ubiquitous presence can affect their analysis as
they can be present in laboratory material. Fluoropolymers such as polytetrafluoro-
ethylene, Teflon® or other fluoropolymers can be used for vial caps, LC instrument
tubing and internal instrument parts. In general, contact with fluoropolymers from
laboratory materials should always be avoided to prevent contamination (Martin
et al. 2004). This can be done by the use of alternative materials such as polypropyl-
ene. Contamination due to fluoropolymer parts in the instrument can be overcome
by the replacement of the parts, when possible, or the installation of a guard column
upstream of the LC-column to retain PFASs contamination (Martin et al. 2004).

One of the main challenges regarding monitoring of PFASs is the variety and
rapid progression of the fluorinated materials currently on the market. Hundreds to
thousands per and poly-fluorinated compounds are currently in use and new formu-
lations are brought to market continuously (Gordon 2011; D’Eon and Mabury
2011a) for the replacement of the compounds that are considered toxic. Analytical
standards cannot be synthesized fast enough for their confirmation and quantifica-
tion. Therefore, the use of accurate mass equipment is necessary for the assessment
of the exposure to these newly developed compounds. All challenges related to
analytical equipment will be discussed further in the analytical section.
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Fig. 2.2 Extraction and clean-up methods for the analysis of PFASs in biological tissues and flu-
ids (Reprinted from van Leeuwen and de Boer 2007 with permission from Elsevier)

2.3 Sample Preparation

Several studies have reported measurements of PFASs in biological tissues and flu-
ids. Most frequently methods are developed for perfluorocarboxylic acids (PFCAs)
and perfluorosulfonates (PFSAs) with the addition of perfluorooctanesulfonamide
(PFOSA). Similar methods are reported for the extraction in biological samples.
The outline of the procedures used for different sample types is illustrated in
Fig. 2.2. For the extraction of perfluorinated compounds in biological samples, ion-
paired-extraction, solvent extraction and solid-phase extraction are among the most
commonly used techniques, a selection of the methods applied and their description
can be found in Table 2.3.

2.4 Sample Conservation and Pre-treatment

Although immediate analysis is considered as the best option, it is often not feasible
to extract and analyze the sample immediately after collection. Therefore, proper
sample conservation to avoid losses and contamination is necessary. Sample conser-
vation is usually done by freezing. Polypropylene vials are considered as a good
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option to conserve samples. One study has measured traces of PFOA in polypropylene
bottles (Yamashita et al. 2004), thus, it is advised to rinse the sampling vials with
semi-polar solvents when the analysis is targeting very low levels (<ng/L). Glass
containers have been debated, as studies have reported the ability of some PFASs to
stick to glass (Martin et al. 2004; van Leeuwen and de Boer 2007). For biological
tissues and fluids sample, matrix components can shield the active sites at the glass
surface. Karrman et al. did not find any loss for perfluorohexanesulfonic acid
(PFHxS), PFOS, PFOA and perfluorononanoic acid (PFNA) in whole blood sam-
ples stored in glass and frozen over a period of 4 months (Karrman et al. 2006).
Overall freezing in polypropylene vials seems to be a good solution for storage of
samples prior to PFCAs and PFSAs analysis. Berger et al. evaluated losses of
PFCAs and PFSAs in water stored in polypropylene tubes for 90 days. All com-
pounds showed recoveries >70 % except for perfluoroundecanoic acid (PFUnDA)
and perfluorododecanoic (PFDoDA) (<50 % recovery) (Berger et al. 2011). The use
of high-density polyethylene or glass container is advised by Berger et al. (2011),
although their effectiveness is not measured. Specific care must be taken for PFASs
analysis where storage conditions in biological samples have not yet been described,
such as FTOHs, di-PAPs and others. Additional studies are needed to assess the
effects of sampling and storage conditions for these PFASs.

2.5 Ion Pairing Extraction

The Ion-Pairing Extraction (IPE) was first developed by Hansen et al. (2001) for a
classic suite of PFASs (PFOA, PFOS, PFHxS, PFOSA, tetrahydroperfluorooctane-
sulfonate (THPFOS)). IPE is a sub-type of the liquid-liquid extraction. It involves
the addition of a salt such as a tetrabutylammonium (TBA) solution (at a certain pH)
for the ion-pairing of the target compounds, followed by an extraction with methyl-
fer-butyl ether (MTBE). This method has initially been developed for the extraction
of PFAS from serum and liver, and has been used since for a wide variety of exirac-
tions in human serum, nails or tissues (Kannan et al. 2004; Kim et al. 2011; Lee and
Mabury 2011; Loi et al. 2013; Olsen et al. 2003), as well as for biota (Furdui et al.
2008; Llorca et al. 2009; Vestergren et al. 2012). The advantages of this method are
its simplicity and the limited number of steps, as it does not require any sample pre-
treatment (i.e., protein precipitation). However, this method has also been proven to
have some disadvantages, such as co-extraction of matrix components. This disad-
vantage could be improved by the introduction of a clean-up step, which is usually
not performed (Kim et al. 2011; Lee and Mabury 2011; Loi et al. 2013) or limited
to a 0.2 pm filtration (Kannan et al. 2004). Another disadvantage for serum and
plasma extraction is the volume of the samples, 0.5-3 mL generally, which can be
problematic for human biomonitoring where small volume sampling is preferred.
This method has recently been proven effective for the extraction of PFASs other
than PFCAs and PFS As, such as fluorotelomer sulfonates (FTS), polyfluoroalkyl-
phosphate  esthers (mono and di-PAPs), perfluorophosphates (PEFPA),
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perfluorophosphinates (PFPiA) and others (Lee and Mabury 2011; Loi et al. 2013).
It can be therefore considered useful for the monitoring of these rarely monitored
PFASs.

2.6 Other Solvent Extractions

Other solvent mixtures have been explored for the extraction of PFASs in liquid and
solid biological matrices. Addition of acetonitrile followed by sonication has been
used for serum and whole blood (Glynn et al. 2012; Li et al. 2012). This method has
been used for PFCAs (C6-C14) and PFSA (C4-C10) as well as PFOS A, with good
recoveries (>70 %) and comparable detection limits in respect to classic
IPE. Extraction with acetonitrile has also proven its efficiency for solid matrices
such as hair and nails (Li et al. 2012; Perez et al. 2012). Hair and nails have to
undergo a cleaning step before extraction to avoid contamination from the surface.
PFSA and PFCAs have shown good recoveries and detection limits down to 0.03 ng/g
for hair and nails with solvent extraction (Li et al. 2012). Acetonitrile extraction
without sonication has also been demonstrated as a quick method for the extraction
of a multitude of human tissues (liver, kidney, adipose tissue, brain, thyroid, muscle)
(Maestri et al. 2006). The samples were homogenized and diluted in water, extracted
with acetonitrile and subsequently enriched by SPE on a C18 column, followed by
purification on a strong anion exchange column (SAX). This method allowed suffi-
cient sample clean-up for detection limits as low as 0.1 ng/g by LC-MS. Solvent
extraction other than IPE is usually followed by a clean-up step with solid phase
extraction. Different phases have been used for the purification: Oasis-Wax (weak
anion exchange) for nails and hair (Li et al. 2012), ENVI-Carb for serum and whole
blood (Glynn et al. 2012) and C-18 followed by SAX for human tissues (Maestri
et al. 2006). Solvents with MTBE have also been used for the extraction of more
volatile compounds such as FTOHs from rat plasma. This technique produced a
clean extract with good recoveries (86113 %) and did not need further clean-up for
an limit of detection (LOD) of 5 ng/mL (Szostek and Prickett 2004).

2.7 Solid Phase Extraction

Solid phase extraction has been widely used for the extraction of PFASs in environ-
mental samples, especially in water (D’Eon et al. 2009; Ding et al. 2012) and biota
samples (Delinsky et al. 2009; Ye et al. 2008). Solid-phase extraction (SPE) is a
separation process by which compounds that are dissolved or suspended in a liquid
mixture are separated from other compounds in the mixture, according to their phys-
ical and chemical properties. SPE involves the filtration of the liquid sample trough
a cartridge filled with a stationary phase whose composition and properties can vary.
SPE can be used as a concentration step as well as a clean-up step. For the extraction
of complex matrices usually a pre-treatment is required, such as: grinding, protein
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precipitation, or filtration to prevent the cartridges from clogging. This method has
been generally preferred for liquid matrices, serum, milk and urine (Kuklenyik et al.
2004; Reiner et al. 2011; Zhang et al. 2014). Protein precipitation is usually per-
formed in liquid matrices before extraction by the addition of solvent (methanol or
acetonitrile) and centrifugation, but has also been used for solid matrices such as
feces (Genuis et al. 2010) and various human tissues (Maestri et al. 2006). Currently,
the most commonly used cartridge phases for PFASs extraction are Oasis-HLB and
Oasis-WAX, although other sorbents have been used. Kaarman et al. (2006) devel-
oped a method using C-18 sorbent for PFCAs and PFS As extraction in whole blood.
The method showed good recoveries (>70 %) for PFCAs C6-C10, PFHxS and
PFOS, but was not very efficient for higher chain PFCAs (C11-C13<70 %), PFOSA
and PFBS (26 %). A rapid method was developed by Kuklenyik et al. (2004) for the
analysis of human serum and milk with HLB automated SPE, followed by HPLC-
TuarbolonSpray-MS/MS. This method has the advantage of being extremely rapid,
and it is currently used by the center for disease control and prevention (CDC) in the
National Health and Nutrition Examination Survey (NHANES) for the measure of:
C5-C12 PFCA, PFHxS, PFOS and PFOSA in human serum across the US popula-
tion. Recently, a modified version of this method was applied to serum analysis for:
C7-C11 PFCAs, PFHxS, PFOS and PFOSA that resulted in low detection limits
(8100 pg/mL) and good recoveries (>80 %, except for PFHxS >60 %) (Kato et al.
2011). Although Oasis-HLB seems like a good sorbent, its lower efficiency for
smaller chains (<C3) and higher chains (>C10) PFASs, is a disadvantage.

In environmental samples applications, Oasis-WAX sorbents are very success-
ful, which is leading recent publication to use this technique for biological fluids.
SPE extraction with Oasis-WAX has been used as a purification method for whole
blood of ski waxers workers after formic acid digestion and sonication (Nilsson
et al. 2013), for purification of hair and nail extracts (Li et al. 2012) and urine sam-
ples (Zhang et al. 2014). This method is one of the first that has been proven effec-
tive not only for PFCAs and PFSAs, but also for the extraction of fluorotelomer
alcohol metabolites in human blood (ski waxers), with recoveries ranging from 50
to 90 %. This method is interesting for further studies involving the monitoring of
PFASs metabolites in humans.

Oasis-WAX sorbent has also been described as efficient for urine analysis of
PFCAs (C7-C11), PFHxS, PFOS and PFOSA with recoveries >90 % and low
detection limits (14-173 pg/mL). Only a handful of studies are available on urine
analysis of PFASs (Genuis et al. 2013; Perez et al. 2012; Zhang et al. 2013), this
method could be promising to allow further biomonitoring in this matrix, which is
much easier to collect in respect to serum, blood and milk.

2.8 Alternative Methods Requiring No-Extraction

Recently, a few studies have reported the use of new online extraction methods for
the determination of PFASs. Wang et al. (2011) developed a method using online-
solid phase extraction for the determination of 18 PFCAs in human serum. Online
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SPE involves the loading of the sample onto an online SPE cartridge by using the
liquid chromatography device. The sample is then pushed across the sorbent where
compounds are retained. This step is followed by a reversal of flow across the sor-
bent to elute the target analytes directly onto the analytical LC column. This
method has the advantage of requiring less sample preparation, using only 100 pL
of sample, while achieving detection limits close or lower than current extraction
techniques (<0.09 ng/mlL) (Wang et al. 2011). A similar method was reported by
Schecter et al. also for human serum (Schecter et al. 2012) but with slightly higher
detection limits (0.1-0.2 ng/mL). Kato et al. (2009) applied online-SPE to the anal-
ysis of blood-spots that are collected from newborns infants. This method is very
interesting as it allows the use of only 75 pL of serum, while achieving good recov-
eries for PFOA and PFOS (100 %) and detection limits of 0.1-0.4 ng/mL.. Analytical
methods that require no exiraction procedures are interesting as they avoid all bias
and errors related to sample preparation. It also allows the development of high-
throughput analysis, with the need of a very small volume of sample, and by
decreasing preparation time, allowing the analysis of a greater number of
samples.

29 Clean-Up

Clean-up steps can be added to the extraction method to minimize matrix inter-
ference and improve analysis. Further clean-up is usually necessary for complex
sample types such as liver, adipose tissue and feces. Additional steps can be
added to remove lipids, small solids in suspension or other matrix components. A
summary of clean-up procedures reported in the literature is described in
Table 2.2.

A common clean-up step is the filtration of the sample prior to analysis.
Filtration is often applied after IPE and solvent extractions. A 0.2 pm syringe
nylon filter is commonly used for this procedure (D’Eon and Mabury 2011b;
Kannan et al. 2004) but care should be taken in the choice of filters as some brands
have been reported to contain amounts of PFOS and PFOA (Yamashita et al.
2005). Solid-phase extraction does not usually require a clean-up step, but it can
be used as a clean-up step after protein precipitation, acid digestion and solvent
extraction particularly for the extraction of human tissues (Genuis et al. 2010;
Glynn et al. 2012; Maestri et al. 2006). Recently, Turbulent-flow chromatography
online technique has been used for the clean-up of urine, and hair and tissue
extracts, for the analysis of PFASs (Perez et al. 2012, 2013). Turbulent flow liquid
chromatography combines size exclusion and traditional stationary phase column
to separate matrix components, such as proteins and target analytes in biological
fluids. The process is very rapid, and can be used as an on-line extraction or puri-
fication method. Very low limits of detections have been achieved with this tech-
nique for PFCAs, PFSAs and PFASs metabolites (Table 2.3) (Perez et al. 2012,
2013).
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2 Analysis of PFASs in Biological Tissues and Fluids 43
2.10 Analytical Methods

Liquid chromatography coupled with mass spectrometry has been the preferred
method for the determination of ionic PFASs such as PFCAs and PFSAs in biologi-
cal tissues and fluids. An overview of current methods and their detection limits for
human samples is shown in Table 2.3. Liquid chromatography coupled with triple-
quadrupole (QqQ) tandem mass spectrometry with negative electrospray ionization
interface is the most commonly used technique for quantitative analysis of PFASs.
In the past, some studies have been performed with single quadrupole mass spec-
trometers (Maestri et al. 2006). Although this method can be sensitive, it remains
uncertain for the analysis in complex matrixes because of lower selectivity and
matrix interference, specifically for PFOS and PIFHxS where known mass interfer-
ences have been reported (Benskin et al. 2007; Keller et al. 2010). MS/MS tech-
niques allow the monitoring of two transitions while conserving good sensitivity.
Transition 499—>80 for PFOS and 399—>80 for PFHxS, must be avoided, as it has
interference with bile acids naturally present in biological samples; 499—>99 and
399->99 can be used as an alternative (Benskin et al. 2007). To obtain good separa-
tion in liquid-chromatography, the use of reverse-phase C8 and C18 stationary
phase has been the common practice in the analysis of PFASs. Reiner et al. (2012)
compared the use of C8 column and pentafluorophenyl stationary phase for the
analysis of PFCAs (C7-C11), PFHxS and PFOS. The two phases were considered
comparable, although PFP was more efficient for the separation of PFOS and
TDCA, making it an interesting option for analysis where TDCA is not eliminated
in the extraction procedure.

In the last few years, growing interest has been brought to the isomer-specific
analysis of PFASs in biological samples. The differentiation between branched and
linear isomers for PFCAs, PFSAs and PFOSA, is considered important for more
accurate measurements in MS/MS, but also to elucidate sources of exposure. Good
separation of isomers has been achieved using a C8 or C18 reverse phase column
and longer runs (>30 min) in human serum (Benskin et al. 2007; Berger et al. 2011)
and urine (Zhang et al. 2014).

With the continuous new development of PFASs on the market, new analytical
techniques need to be developed for the analysis of biological tissues and fluids.
Although an increasing number of isotopically labeled standards and pure standards
are available, their variety cannot keep pace with the analytical needs (Berger et al.
2011). Therefore, high-resolution mass spectrometry is an interesting option. There
has been very little, to no use of high resolution detection of perfluorinated com-
pounds in human samples. HPLC coupled with time-of-flight (TOF) MS has been
used for the identification of a broad range of PFASs in food packaging samples
(Trier et al. 2011a, b) allowing the identification of non-previously reported PFASs
in these matrices. The development of HPLC-MS-qTOF analytical methods could
contribute to the determination of non-previously reported PFSAs in biological
samples.
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44 S. Dagnino

LC-methods are not suitable for all PFASs. Volatile PFASs such as FTOHs are
not suited for LC-MS/MS determination. Gas-chromatography coupled with mass
spectrometry (GC-MS) technique has been proven useful for the determination of
FTOHs. Szostek and Prickett (2004) developed a method for the analysis of 8:2
FTOH in rat plasma, liver, kidney and adipose tissue by GC-MS. This method used
electron impact ionization, and did not require a derivatization step. LODs of 5 ng/
mL for serum and 4-12 ng/g for rat tissues were achieved after an extraction with
MTBE for serum, and hexane for tissues. Fasano et al. (2006) developed a method
for the analysis of 8:2 FTOH in dosed rat plasma by headspace analysis. Headspace
solid-phase microextraction analysis requires the heating of the sample to achieve
volatilization of the compounds of interest. This technique is interesting as it
requires a very limited sample preparation, however limits of detection were not
reported in the study. Very few studies use GC-MS techniques for the monitoring of
PFASs in biological samples. Although LC-MS/MS remains the method of choice
for PFASs analysis in biological samples, further method developments for GC-MS/
MS methods would be interesting, namely for the quantitation of FTOHs and other
more volatile PFASs in biological tissues and samples in order to obtain information
on human exposure to these compounds.

To determine the total load of PFASs present in a biological sample, Miyake
et al. (2007), developed a method to measure total organic fluorine in a blood sam-
ple using combustion ion chromatography. The analysis revealed that only a small
percentage of fluorine content in blood of general population was explained by the
analysis of routine PFASs. These results suggested the presence of uncharacterized
fluorine fractions in blood, demanding further studies for the identification of these
unknowns.

211 QA/QC

In the early 2000s, quantification of PFASs was biased by the lack of proper analyti-
cal standards, isotopically labeled surrogates and reference material. For the last
few years, the quantity and quality of analytical standards in the market has drasti-
cally increased, allowing for better identification and more sensitive quantifications
of PFASs. A list of current and historical isotopically labeled standard used for
PFASs is shown in Table 2.3. In early studies, the lack of isotopically labeled stan-
dards was overcome by the use of THPT'OS for the measure of recoveries and the
quantification of PFOS and PFOA (Kannan et al. 2004; Karrman et al. 2005;
Kuklenyik et al. 2004). Today, many standards and isotopically labeled standards
are available, not only for PFCAs and PFSAs, but also for alternative PFASs, and
have been used for their identification and quantitation in serum and whole blood;
for instance FTOHs, diPAPs (D'Eon and Mabury 2011b; Lee and Mabury 2011) as
well as PFASs metabolites (FTCAs, FTUCAs) (Lee and Mabury 2011; Nilsson
et al. 2013). Since 2003, several reviews on PFASs analysis have stressed the
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2 Analysis of PFASs in Biological Tissues and Fluids 45

importance of isotopically labeled standards for accurate analysis (Martin et al.
2004; van Leeuwen and de Boer 2007; van Leeuwen et al. 2006; Berger et al. 2011).
Authentic labeled standards allow to correct errors in quantification that can occur
after recovery losses and ion suppression due to matrix effects. To overcome these
biases, some studies have used matrix-matched calibration to correct for matrix
effects, using for example: cow or rabbit serum, cow milk, and even cow hoof
(Olsen et al. 2003; Xu et al. 2010). An inter-laboratory study determined that when
matrix-matched calibration was used, an accuracy and precision of 100 % (+/-
15 %) was obtained in human serum and plasma for PFOA, PFOS and PFNA
extracted with different methods (Reagen et al. 2008).

To address the issues of laboratory performance for PFASs analysis in biological
tissues and fluids, inter-laboratory studies (ILS) for the analysis of human serum
and milk have been conducted. These studies have compared extraction and analyti-
cal techniques. Keller et al. (2010) compared the analysis of serum standard refer-
ence material developed by the United States National Institute of Standards and
Technology (NIST). This study showed RSD lower than 26 % when comparing the
analysis of PFOA, PFNA, PFHxS and PFOS, in 6 different laboratory, indicating a
greal improvement in inter-laboratory variability in respect to previous ILS
(Lindstrom et al. 2009; Longnecker et al. 2008; van Leeuwen et al. 2006). The
recent availability of a serum and milk human standard reference material produced
by NIST will contribute to better QA/QC practices (Reiner et al. 2011, 2012). With
the development of the analysis of PFASs in other fluids, such as urine and tissues,
new ILS dealing with the analysis of these matrices could be useful. Other QA/QC
practices are advised, and should be followed for accurate analysis, such as the
addition of procedural blanks, maitrix spikes, the use of high-purity standards and
when possible, the use of structurally similar and mass labeled internal standards
(Keller et al. 2010).

2.12 Conclusion

Many improvements have been made over the past 10 years for the analysis of
PFASs in biological tissues and fluids. Still many challenges and uncertainties
remain. Because of the ubiquitous presence of PFASs in daily use, special care must
be taken in the choice of laboratory equipment to avoid contamination. The addition
of procedural blanks, spikes, and the use of matched matrix calibration and identical
isotopically labeled surrogate standards can significantly increase the accuracy and
the precision of the analysis. When analyzing PFASs in biological samples, atten-
tion must be brought to the choice of transition to avoid interferences from matrix
components. Overall, new extraction and analysis techniques have allowed the
detection at very low levels (<50 pg/mL) in human serum and selected tissues. New
developments include the use of online-extraction methods, allowing quick and pre-
cise analysis of a greater number of samples. These high-throughput techniques are
interesting for the development of large and significant epidemiological studies.
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The further development of the use of high-resolution mass spectrometry will
permit the detection of previously unknown PFASs, as well as PFASs metabolites
that can be used as biomarkers of exposure.
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Chapter 3
PFAS:s in the General Population

Kayoko Kato, Xiaoyun Ye, and Antonia M. Calafat

Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been
manufactured since the 1950s for use as surface protectants for textiles and leather
treatment, as protection additives in food packaging and paper products, and in
firefighting foams. Some PFASs are persistent in the environment and in people,
and can be transported to remote regions. The main pathways of exposure to PFASs
in humans include diet, drinking water, and indoor dust, but predictors of PFASs
exposures are not clearly understood. Since 2002, changes in manufacturing practices
appear to have reduced exposure to some of these PFASs both in the environment
and in people,- but exposure to PFASs is still widespread. We review relevant
research published up to the first quarter of 2014 to understand the demographic,
geographic, and temporal differences that contribute to general population exposures
to PFASs around the world. We also present data on exposures to PFASs in some
vulnerable population groups (e.g., pregnant women, infants, young children).

Keywords Biomonitoring « Exposure assessment « PFOA « PFOS

3.1 Introduction

Polyfluoroalkyl chemicals (PFASs) have been manufactured since the 1950s (Buck
et al. 2011). Because of their chemical inertness and heat stability, PFASs have been
used extensively in a variety of industrial and commercial applications, such as
surfactants, lubricants, paper and textile coatings, polishes, food packaging, and
fire-retarding foams (Lau et al. 2007; Prevedouros et al. 2006).
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Some PFASs persist in the environment and in people, and can be transported to
remote locations (Paul et al. 2009; Armitage et al. 2009; Ahrens 2011; Houde et al.
2006). Because of widespread exposure to certain PFASs in wildlife and people,
and the potential adverse health impacts associated with such exposures (Lau et al.
2007; Steenland et al. 2010a), in 2002, 3M, the main worldwide manufacturer of
perfluorooctane sulfonic acid (PFOS), discontinued the production of PFOS precur-
sors and related compounds in the United States. PFOS is still produced in other
countries (Paul et al. 2009; Pistocchi and Loos 2009). Other PFASs including per-
fluorooctancic acid (PFOA), its salts, and precursors are also produced in other
countries and still manufactured in the United States (Buck et al. 2011). However,
efforts from U.S. industry and government exist to limit emissions of PFOA into the
environment to reduce by 2015 the global emissions of PFOA and longer chain
perfluoroalkyl acids (including their relevant precursors) to 95 % of the year 2000
levels (Buck et al. 2011; Prevedouros et al. 2006; US 2006). Similarly, regulatory
and other initiatives intended to reduce environmental emissions of PFASs also
exist in Canada and the European Union (Buck et al. 2011). All of these efforts
appear to have reduced exposure to some of these PFASs not only in the ecosystem
Butt et al. 2007; Furdui et al. 2008; Hart et al. 2008) but also in people (Calafat
et al. 2007a; Olsen et al. 2008; Haug et al. 2009) as discussed later in this chapter.

The main pathway(s) of exposure to PFASs in humans include diet (Ericson et al.
2008; Fromme et al. 2007a; Tittlemier et al. 2007; Yamaguchi et al. 2013; Holzer
et al. 2011; Weihe et al. 2008; Vestergren et al. 2012; Bjermo et al. 2013; Dallaire
et al. 2009), drinking water (Vestergren et al. 2012; Emmett et al. 2006; Holzer et al.
2008), and indoor dust (Vestergren et al. 2012; Kato et al. 2009a; Katsumata et al.
2006; Kubwabo et al. 2005; Martin et al. 2002; Moriwaki et al. 2003; Shoeib et al.
2005; Strynar and Lindstrom 2008; Fraser et al. 2012, 2013) although sources and
routes of exposure to PFASs for children and adults may differ (Calafat et al. 20074,
b; Olsen et al. 20042a). Data on the actual levels of PFASs in people (i.e., biomoni-
toring data) can facilitate the exposure assessment because concentrations of these
compounds in biological fluids represent an integrative measure of exposure to the
target chemicals from multiple sources and routes. Blood (plasma, serum, or whole
blood) is a commonly used biomonitoring matrix for assessing exposure to PFASs.

Biomonitoring data in combination with indirect measures of exposure (e.g.,
environmental monitoring, questionnaire information) are the most appropriate
tools for exposure assessment and can provide useful information about differences
in exposures by geography, demographic factors (e.g., age, sex), and socio-economic
status, as well as time trends. Literature on population exposures to PFASs is
exhaustive and cannot be covered comprehensively in this review. In this chapter,
we present an overview of environmental exposures to PFASs in human populations
based on available information up to the first quarter of 2014. Specifically, we dis-
cuss demographic, geographic, and temporal differences in exposures to PFASs
among the general population. We also discuss exposures to PFASs in vulnerable
population groups (e.g., pregnant women, infants, young children).
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3.2 PFAS:s in General Population Studies

Exposure to PFASs has been estimated from the concentrations of the target PFASs
in serum, plasma, or whole blood in numerous PFASs biomonitoring studies con-
ducted around the world since the early 2000s (Haug et al. 2009; Yamaguchi et al.
2013; Holzer et al. 2011; Bjermo et al. 2013; Dallaire et al. 2009; Olsen et al. 2003,
2004b, 2005, 2012; CDC 2013a; Midasch et al. 2006; Fromme et al. 2007b, 2009;
Vassiliadou et al. 2010; Schroter-Kermani et al. 2013; Ericson et al. 2007; Kannan
et al. 2004; Yeung et al. 2013a, b; Harada et al. 2007; Toms et al. 2009; Haines and
Murray 2012; Jin et al. 2007; Audet-Delage et al. 2013; Schecter et al. 2012; Pinney
et al. 2014; Frisbee et al. 2010; Ingelido et al. 2010; Zhang et al. 2010; Wan et al.
2013; Ji et al. 2012; Bao et al. 2014; Pan et al. 2010; Kim et al. 2014). In Table 3.1,
we present a selection of studies with a sample size of at least 100 participants,
including two national surveys: the National Health and Nutrition Examination
Survey (NHANES) (CDC 2013b), conducted by the National Center for Health
Statistics of the Centers for Discase Control and Prevention in the United States,
and the Canadian Health Measures Survey (CHMS) (Tremblay and Gorber 2007)
administered by Statistics Canada. NHANES is designed to assess the health and
nutritional status of adults and children in the United States. The survey is unique in
that it combines interviews, physical examinations, and analysis of biological sam-
ples for environmental contaminants (CDC 2013b), including PFASs for Americans
12 years of age and older. Similar to NHANES, CHMS provides national data on
indicators of general health, chronic and infectious diseases, and environmental bio-
markers; PFASs exposure data are available for Canadians 20-79 years of age
(Tremblay and Gorber 2007).

For the majority of the general populations examined, the four most commonly
studied PFASs have been PFOS, PFOA, perfluorohexane sulfonic acid (PFHxS),
and perfluorononanoic acid (PFNA) (Table 3.1). Generally, PFOS showed the high-
est serum concentrations followed by PFOA, while other PFASs are detected both
at lower concentrations and frequencies. In occupational settings or in populations
accidentally exposed to specific PFASs (Emmett et al. 2006; Holzer et al. 2008;
Frisbee et al. 2010; Brede et al. 2010; Holzer et al. 2009; Wilhelm et al. 2009;
Winquist et al. 2013; Hoffman et al. 2011; Seals et al. 2011; Shin et al. 201 1a, b;
Bartell et al. 2010; Steenland et al. 2009; Frisbee et al. 2009; Beesoon et al. 2013),
the concentration patterns observed may differ from those reported among the gen-
eral population. We will not cover occupational exposures (the main subject of
Chap. 4), but will discuss some general aspects of accidental exposures later in this
chapter.
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3.3 Determinants of General Population Exposure to PFASs

Exposure to PFASs in the general population of developed countries and many
developing countries is widespread, but the extent of such exposures may vary con-
siderably (Yamaguchi et al. 2013; Vassiliadou et al. 2010; Kannan et al. 2004; Jin
et al. 2007; Audet-Delage et al. 2013; Calafat et al. 2006a; Hemat et al. 2010).
Comparing PFASs concentrations among populations is difficult because of differ-
ences in study design—including age, sex, and race of the populations examined—,
years of sample collection, geographical location, and analytical methodologies
used (e.g., isomeric profiles). Interestingly and despite these challenges, the ranges
of concentrations of PFOS, PFOA, PFHxS, and PFNA are remarkably similar
worldwide. For example, NHANES data in the United States during 1999-2010 are
in agreement with those from American Red Cross donors in 2000-2010 (Olsen
et al. 2012); from Canada in 2007 to 2008 (Haines and Murray 2012); from several
European countries in 2005 to 2006 (Fromme et al. 2009), 2005-2009 (Haug et al.
2009; Vassiliadou et al. 2010; Ingelido et al. 2010) and 2010-2011 (Bjermo et al.
2013); and from China in 2009 (Zhang et al. 2010; Wan et al. 2013).

Research is ongoing to evaluate the determinants of exposure to PFASs, but
exposures to PFASs may be associated with demographic factors such as age, sex
and race. Racial differences in PFASs (e.g., PFOA, PFNA, PFHxS) serum concen-
trations were observed in the United States (Kato et al. 2011). For instance, regard-
less of age, Americans of Mexican descent had lower adjusted geometric mean
serum concentrations of PFNA than non-Hispanic white and non-Hispanic black
Americans (Kato et al. 2011). For PFHxS, non-Hispanic whites and non-Hispanic
blacks had similar concentrations, and both were higher than for Mexican
Americans; at older ages, however, concentrations were different only among
Mexican Americans and non-Hispanic whites (Kato et al. 2011). These differences
may reflect variability in exposures as a result of differences in lifestyle, diet (Holzer
et al. 2011; Zhang et al. 2010; Halldorsson et al. 2008; Rylander et al. 2010), use of
products containing PFASs, physiology (e.g., elimination) (Han et al. 2008), or a
combination of these factors.

Higher concentrations of PFOS, PFOA, and PFHxS among males than among
females have been reported in diverse adult populations around the world (Calafat
et al. 2007a; Olsen et al. 2008; Bjermo et al. 2013; Dallaire et al. 2009; Fromme
et al. 2007b, 2009; Vassiliadon et al. 2010; Ericson et al. 2007; Yeung et al. 20134,
b; Haines and Murray 2012; Ingelido et al. 2010; Ji et al. 2012; Kato et al. 2011),
suggesting the possibility of sex-related exposure differences, perhaps in terms of
lifestyle or diet. In North America, NHANES (Kato et al. 2011) and CHMS (Haines
and Murray 2012) data suggested differences in PFASs concentrations according to
sex. Canadian men had higher plasma PFOS and PFOA concentrations than women
(Haines and Murray 2012). In the United States, males had higher adjusted geomet-
ric mean serum concentrations of PFOS, PFOA, and PFHxS than females regardless
of age (Kato et al. 2011). In addition, males had higher adjusted geometric mean
serum concentrations of PFOA, PFHxS, and PFNA than females regardless of race/
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ethnicity. Differences in concentrations of PFOS, PFOA, PFNA, and PFHxXS by sex
appeared to be more pronounced in younger than in older Americans. These con-
centration trends may be related to sex-related differences in exposures to these
PFASs even at an early age; they may also be related to physiological differences by
sex, including differences in urinary elimination due to the renal resorption of per-
fluoroalkyl acids by organic anion transporters (Han et al. 2008). In addition, men-
ses (Harada et al. 2005; Taylor et al. 2014), pregnancy (Yamaguchi et al. 2013;
Monroy et al. 2008) and lactation (Bjermo et al. 2013; Kubwabo et al. 2013;
Karrman et al. 2007a) may affect elimination of PFASs in females and also contrib-
ute to differences in PFASs exposure between men and women (Knox et al. 2011;
Harada et al. 2004).

Increasing serum concentrations as people age are common for lipophilic persis-
tent pollutants, such as polychlorinated biphenyls, but PFASs do not partition into
fat deposits in the body (Conder et al. 2008). Nonetheless, suggestive associations
between age and exposure to some PFASs have been reported, although without
consistent trends among studies. Geometric mean serum concentrations of PFOS,
PFOA, and PFNA did not differ significantly among age groups for Americans
older than 12 years from NHANES 1999-2000 (Calafat et al. 2007a), in agreement
with findings from several other studies outside the United States (Olsen et al. 2008;
Vassiliadou et al. 2010; Ericson et al. 2007). By contrast, geometric mean serum
concentrations of PFOS and PFNA tended (o increase with age regardless of sex
when combining data from four NHANES cycles (1999-2008) (Kato et al. 201 1).
In another study, PFOS concentration in pooled serum collected from over 2000
Australian donors between 2006 and 2007 was also significantly higher in adults
(>60 years) than in children (Toms et al. 2009). The increase of production of PFASs
since 1970s might have resulted in increased exposure over time for persons aged
>30 years at the time of blood collection in the mid 2000s (Toms et al. 2009). Other
studies also reported increase of PFASs concentrations with age (Haug et al. 2009;
Yamaguchi et al. 2013; Bjermo et al. 2013; Dallaire et al. 2009; Holzer et al. 2008;
Fromme et al. 2007b).

For PFHxS, however, the adjusted geometric mean serum and 95th percentile
concentrations were higher for adolescents than for adults in NHANES (Kato et al.
2011). Higher concentrations of PFHxS in adolescents could be related to youth's
increased contact with carpeted floors because PFHxS had been used for specific
postmarket carpet-treatment applications (Olsen et al. 2004a); carpets and uphol-
stered furniture are known to trap dust, which may also contain PFHxS (Vestergren
et al. 2012; Kato et al. 2009a; Katsumata et al. 2006; Kubwabo et al. 2005; Martin
et al. 2002; Moriwaki et al. 2003; Shoeib et al. 2003; Strynar and Lindstrom 2008;
Fraser et al. 2012, 2013). The lack of consistent age trends for PFASs may be related
to differences in carly life—including in-utero—exposure to these compounds,
ongoing exposures being much lower than previous historical exposures when pro-
duction of the chemicals peaked, poor urinary elimination due to the renal resorp-
tion of perfluoroalkyl acids by organic anion transporters (Han et al. 2008), or a
combination of these factors.
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Even though exposure to PIASs is widespread, differences in exposures between
urban and suburban locations or among various countries also exist (Yamaguchi
et al. 2013; Vassiliadou et al. 2010; Kannan et al. 2004; Jin et al. 2007; Audet-
Delage et al. 2013; Calafat et al. 2006a; Hemat et al. 2010). Factors such as the
environment (e.2., air and water quality), diet, and other lifestyle choices which can
vary considerably among regions and even within the same country (Fromme et al.
2009; Zhao et al. 2011; Martin et al. 2010; Trudel et al. 2008; Vestergren et al. 2008;
Paustenbach et al. 2007; Washburn et al. 2005) likely play a role in the observed
differences. Accidental exposure to certain PFASs (Brede et al. 2010; Oliaei et al.
2013; Post et al. 2013; Weiss et al. 2012; Lindstrom et al. 2011; Wilhelm et al. 2010;
Renner 2009), mainly from contaminated drinking water, is one specific example of
within country differences.

In the mid—Ohio River Valley in the United States, almost 70,000 residents living
near a fluoropolymer production facility had mean PFOA serum concentrations
much higher than the geometric mean serum concentration in NHANES partici-
pants during the same time period (Emmett et al. 2006; Frisbee et al. 2010; Winquist
et al. 2013; Hoffman et al. 2011; Seals et al. 2011; Shin et al. 2011a, b; Bartell et al.
2010; Steenland et al. 2009; Frisbee et al. 2009). The increased PFOA concentration
was associated with consumption of drinking water contaminated with PFOA
(Emmett et al. 2006; Winquist et al. 2013; Hoffman et al. 2011; Seals et al. 2011;
Shin et al. 201 1a, b; Bartell et al. 2010; Steenland et al. 2009). A similar situation
occurred in Arnsberg, Germany, where about 40,000 residents were exposed to
PFOA-contaminated drinking water (Holzer et al. 2008; Brede et al. 2010; Holzer
et al. 2009; Wilhelm et al. 2009). In another study from Germany, blood PFOS
concentrations in a group of ten people who drank contaminated water from private
wells were higher than among the general population (Weiss et al. 2012).

Of interest, exposure patterns in populations accidentally exposed to specific
PFASs (Emmett et al. 2006; Holzer et al. 2008, 2009; Brede et al. 2010; Wilhelm
et al. 2009; Winquist et al. 2013; Hoffman et al. 2011; Seals et al. 2011; Shin et al.
2011a, b; Bartell et al. 2010; Steenland et al. 2009; Beesoon et al. 2013; Weiss et al.
2012) can differ considerably from those reported among the general population
(Emmett et al. 2006; Holzer et al. 2008, 2009; Brede et al. 2010; Wilhelm et al.
2009; Winquist et al. 2013; Hoffman et al. 2011; Seals et al. 2011; Shin et al. 20114,
b; Bartell et al. 2010; Steenland et al. 2009). Studies of such populations may be
useful to both evaluate associations between exposures to PFASs and potential
health effects (Frisbee et al. 2010; Barry et al. 2013; Darrow et al. 2013; Vieira et al.
2013; Lopez-Espinosa et al. 2011, 2012; Savitz et al. 2012; Innes et al. 2011; Stein
and Savitz 2011; Nolan et al. 2010; Steenland et al. 2010b; Nolan et al. 2009; Stein
et al. 2009) as well as the efficacy of interventions to remove the PFASs from the
contamination source {(¢.g., water) (Pinney et al. 2014; Bartell et al. 2010; Rumsby
et al. 2009). For instance, certain drinking water treatments including granular
activated carbon adsorption can remove PFOA and other long chain PFASs from the
potable water supply (Eschauzier et al. 2012; Flores et al. 2013; Rahman et al. 2014;
Takagi et al. 2011) and effectively reduced exposure to PFOA in consumers of
treated drinking water (Pinney et al. 2014; Bartell et al. 2010; Rumsby et al. 2009).
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Biomonitoring concentrations provide an integrated measure of exposures
through all potential sources and routes of exposure (Calafat et al. 2006b), but
biomonitoring data may also be useful to identily potential exposure pathways.
Synthesis of PFASs has employed electrochemical fluorization (ECF) or fluorotel-
omerization. ECF generates linear as well as branched isomers, but telomerization
exclusively generates linear isomers (Vyas et al. 2007). In a standard product after
ECF, the proportion of PFOS isomers was 70 % linear and 30 % branched; ECF
PFOA had a consistent isomer composition of 78 % linear and 22 % branched
(Benskin et al. 2010a). The presence of PFOS and PFOA branched isomers was first
noted in 2001 (Hansen et al. 2001). Limited data exist on the toxicokinetics of the
various isomers (Benskin et al. 2009a, b; De Silva et al. 2009), but the structural
isomer patterns in humans may be useful for understanding the routes and sources
of exposure to PFASs (De Silva and Mabury 2006; Karrman et al. 2007b; Benskin
et al. 2010b).

In 70 blood samples collected in 1997-2003 from Sweden, the United Kingdom,
and Australia, linear PFOS was the main isomer comprising 58-70 % of the total
PFOS measured, depending on the location (Karrman et al. 2007b); similarly, linear
PFOS was 53 % of the total PFOS measured in 20 Canadians’ blood samples col-
lected in 2007-2008 (Zhang et al. 2013a). Differences in isomeric distributions may
relate to different isomer patterns in the source products or to country-specific dif-
ferences in the major human exposure pathways (Karrman et al. 2007b). The differ-
ent ratio of the PFOS isomers could also indicate differential uptake of the branched
and linear PFOS isomers, and also reflect different renal clearances (Zhang et al.
2013a) or tranceplacental transfer (Hanssen et al. 2010) in humans.

From 1947 to 2002, worldwide production of PFOA was mainly by ECF and
exposure to both linear and branched isomers likely occurred. Branched PFOA iso-
mers were detected in 96.9 % of NHANES 1999-2000 participants sera, with a
median (25th-95th percentiles) percentage of branched PFOA isomers of 4.2 %
(2.7-9.9 %) (Kato et al. 2011). By contrast, only the linear PFOA isomer was
detected among NHANES 2007-2008 participants (Kato et al. 2011). Similarly, in
16 pooled sera collected across the Midwest United States during 2004 and 2005,
only between 1.6 and 2.3 % of the mean concentrations of PFOA, PFNA, and
another PFAS, perfluoroundecanoate, were branched isomers (De Silva and Mabury
2006). The relatively high proportion of linear PFOA in serum in these studies may
be partly due to exposure to and metabolism of fluorotelomer alcohols and olefins,
two classes of PFASs synthesized by the telomerization process (Benskin et al.
2010a). Linear isomers of PFASs also predominated in wildlife during 1999-2003
(Butt et al. 2010). Together, the above findings suggest that telomer products may
have contributed to PFOA burden after the phase-out of ECF products (Prevedouros
et al. 2006; Ellis et al. 2004).

Paired blood and urine samples (N=86) collected from Chinese adults in 2010
were analyzed for linear and branched PFOS and PFOA isomers (Zhang et al.
2013a). PFOS and PFOA concentrations in urine and blood were correlated, but the
percentage of linear and branched isomers in the two matrices differed. The mean
percentage of linear PFOS in blood (53 %) was significantly lower than in the ECF
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standard (70 %), but the mean percentage of linear PFOA (97 %) was higher than in
the ECF standard (78 %) (Zhang et al. 2013a). Interestingly, the mean percentage of
linear isomers in urine (PFOS, 45 %; PFOA, 94 %) was lower than in blood (Zhang
et al. 2013a) suggesting preferential excretion of the branched isomers of PFOA and
PFOS in urine (Zhang et al. 2013a). Results from this study also suggested that
perfluoroalkyl carboxylates (PFCAs) were excreted more efficiently in urine than
their corresponding perfluoroalkane sulfonates of the same carbon chain-length.
Also, although urinary excretion was a major elimination route for short PFCAs
(C £8), other routes of excretion likely contribute to overall elimination for longer
PIFCAs (e.g., PFOA), PFHxS and PFOS.

3.4 Temporal Trends in Exposure to PFASs

PFASs manufacturing started in the 1950s and peaked in the 1980s-1990s
(Prevedouros et al. 2006; Paul et al. 2009). Estimates suggest that the global produc-
tion volumes and environmental releases of PFOS and its precursors started to
decrease in the mid 1990s, but voluntary emission reduction measures were not
implemented before 1997 (Paul et al. 2009). Concerns about the potential environ-
mental and toxicological impact of certain PFASs led to (a) several major changes
in manufacturing practices (Prevedouros et al. 2006; Paul et al. 2009; Pistocchi and
Loos 2009; US 2006), and (b) other initiatives to reduce environmental emissions of
these compounds or their precursors (Buck et al. 2011). First, 3M Company, the
main global manufacturer of perfluorooctanesulfonyl fluoride (POSF)-based mate-
rials (Prevedouros et al. 2006), including PFOS, PFOA and related compounds,
phased out the production of these chemicals in 2000-2002. Furthermore, the US
Environmental Protection Agency and eight leading global companies participated
in a stewardship agreement to reduce emissions and product content of PFOA and
related chemicals by 95 % by 2010 and to work toward their elimination by 2015
(US 2006). Canadian environmental and health authorities and five companies
reached a similar agreement to restrict certain PFASs in products, and a European
Union Marketing and Use Directive restricted the use of “perfluorooctane sulfonates”
in the European Union (Buck et al. 2011). Last, PFOS was added to the persistent
organic pollutants list of the Stockholm Convention in May 2009 as an Annex B
substance (i.e., restricted in its use) (Ahrens 2011). All of these changes have
impacted exposure to PFASs as discussed below.

Temporal trends have been investigated in the United States (Olsen et al. 2005,
2012; Kato et al. 2011), Germany (Schroter-Kermani et al. 2013; Yeung et al. 20134,
b), Norway (Haug et al. 2009), Sweden (Glynn et al. 2012), Australia (Toms et al.
2009), Japan (Harada et al. 2007), and China (Jin et al. 2007; Chen et al. 2009).
Despite differences in design among studies—pools vs individual specimens,
plasma vs serum, sample size, time period—, PFASs concentrations in people
follow similar increasing trends from the 1970s to the mid 1990s because of the
high production and widespread use of this class of compounds and their resulting
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emissions (Prevedouros et al. 2006; Paul et al. 2009). For instance, participants in
two community-based cohorts from Maryland in the United States had blood
concentrations of PFOS, PFOA, and PFHxS, among other PFASs, significantly
higher in 1989 than in 1974 (Olsen et al. 2005). In Japan, serum concentrations of
PFOS and PFOA from urban females increased 3 and 14 times, respectively,
between 1977 and 1995, before plateauning between 1991 and 2003 (Harada et al.
2004). In Chinese students, faculty members and university workers, median serum
concentrations of PFOA and PFOS increased significantly from 1987 untl 2002
(Jin et al. 2007). Similar time trends were observed in Sweden using pooled milk
samples: PFOS and PIFOA concentrations increased significantly from 1972 to
2000, and showed statistically significant decreasing trends during 2001-2008
(Sundstrom et al. 2011).

Compared to the late 1990s, serum concentrations of PFOS and PFOA have
shown a downward trend worldwide since the 2000s. In a Norwegian study using 57
pooled samples collected from 1976 to 2007, serum concentrations of PFOS and
PFOA in men increased ninefold from 1977 to the mid 1990s, then reached a pla-
teau before starting to decrease around the year 2000 (Haug et al. 2009); PFOA
concentrations decreased by about 40 % between 2000 and 2006 in Norwegian men
40-50 years old (Haug et al. 2009). Similarly, plasma concentrations of PFOS and
PFOA in 420 samples collected from residents of two German cities decreased
between 2000 and 2009 (Yeung et al. 2013a, b). Sera collected from Swedish
primiparous women sampled three weeks after delivery in 1996-2010 also showed
decreasing concentrations of PFOS and PFOA (Glynn et al. 2012). In the period
from 2002 to 2009, PFOA concentrations in serum pools from Australians older
than 16 years decreased by about 50 % (Toms et al. 2009). In American Red Cross
donors, PFOA geometric mean serum concentrations decreased from 4.7 ng/mlL
(2000-2001) to 2.44 ng/mL (2010) (Olsen et al. 2012). Similar trends were observed
among the US general population with geometric mean serum concentrations
decreasing from 5.2 ng/mL (PFOA) and 30.4 ng/mL (PFOS) in 1999-2000 to
3.07 ng/mL (PFOA) and in 9.32 ng/mL (PFOS) in 2009-2010 (CDC 2013a)
although from 2005 to 2008, PFOA adjusted concentrations appeared to increase
for males but remained the same for females (Kato et al. 2011).

Compared with PFOS and PFOA, concentrations of PFNA in NHANES partici-
pants showed an upward trend, regardless of race/ethnicity since 1999-2000 (Kato
et al. 2011). The geometric mean serum concentration of PFNA in the US general
population increased more than twofold between 1999-2000 and 2009-2010 (CDC
2013a). In German residents, plasma concentrations of PFNA also increased during
2000-2009 while those of PFOS and PFOA decreased (Yeung et al. 2013a, b).
Because PFNA was present as a reaction by-product in POSF-based materials
(Prevedouros et al. 2006) which are no longer produced in the United States since
2000-2002, the observed PFNA concentration trends may be related to the degrada-
tion of volatile fluorotelomer alcohols (Ellis et al. 2004). These human data are also
in agreement with wildlife data suggesting that concentrations of PFNA and certain
longer chain-length PFASs show an upward trend in the same time period (Olsen
et al. 2012; Yeung ct al. 2013a; Glynn et al. 2012; Dietz et al. 2008).
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3.5 Exposure to PFASs in Vulnerable Populations

Biomonitoring studies among pregnant women, infants, and young children are of
interest because stressors, including chemical exposures, during these critical time
periods may impact health later in life. Unfortunately, these segments of the popula-
tion are poorly represented in general population biomonitoring surveys such as
NHANES (CDC 2006) and CHMS (Haines and Murray 2012). For instance, to
date, published data on background exposure to PFASs among pregnant women in
the United States general population are limited to only 180 of 1,079 women
17-39 years of age who participated in 2003-2008 NHANES (Woodruff et al. 2011;
Jain 2013). Information on background exposure to PFASs exist for pregnant
women or newborns in other countries including Great Britain (Maisonet et al.
2012), Denmark (Kristensen et al. 2013; Fei et al. 2009), Norway (Ode et al. 2013),
Sweden (Starling et al. 2014), Canada (Monroy et al. 2008; Hamm et al. 2010),
China (Wu et al. 2012), and Japan (Washino et al. 2009). In Table 3.2, we present
concentrations of PFASs in women during pregnancy or at delivery, or infants
shortly after birth from select studies with sample sizes of at least 30 participants
(Monroy et al. 2008; Karrman et al. 2007a; Maisonet et al. 2012; Kristensen et al.
2013; Fei et al. 2009; Ode et al. 2013; Starling et al. 2014; Hamm et al. 2010; Wu
ct al. 2012; Washino et al. 2009; Whitworth et al. 2012; Stein et al. 2012; Liu et al.
2011; Lee et al. 2013; Kim et al. 2011a; Inoue et al. 2004; Hanssen et al. 2013;
Fromme et al. 2010),

Research has also shown that PFASs can be transported across the placenta
and several PFASs have been detected in cord serum (Monroy et al. 2008; Hanssen
et al. 2010; Glynn et al. 2012; Ode et al. 2013; Liu et al. 2011; Lee et al. 2013; Kim
et al. 2011a; Inoue et al. 2004; Hanssen et al. 2013; Fromme et al. 2010;
Arbuckle et al. 2013; Lien et al. 2013; Porpora et al. 2013; Zhang et al. 2011,
2013b; Chen et al. 2012; Gutzkow et al. 2012; Llorca et al. 2012; Beesoon et al.
2011; Kim et al. 2011b; Lien et al. 2011; Apelberg et al. 2007; Midasch et al. 2007;
Needham et al. 2011). Furthermore, data on paired maternal and cord blood PFASs
concentrations also exist for populations around the world (Monroy et al. 2008;
Hanssen et al. 2010; Glynn et al. 2012; Ode et al. 2013; Liu et al. 2011; Lee et al.
2013; Kim et al. 20114, b; Hanssen et al. 2013; Fromme et al. 2010; Porpora et al.
2013; Zhang et al. 2013b; Gutzkow et al. 2012; Beesoon et al. 2011; Midasch
et al. 2007; Needham et al. 2011). Interestingly, the ratio of concentrations between
maternal and infant’s samples vary depending on the compound. For example, ratios
between maternal and cord serum concentration were ~1 for PFOA but ~2 for PFOS
(Monroy et al. 2008; Hanssen et al. 2010; Ode et al. 2013; Lee et al. 2013; Kim et al.
2011a, b; Fromme et al. 2010; Porpora et al. 2013; Zhang et al. 2013b; Gutzkow
et al. 2012; Beesoon et al. 2011; Midasch et al. 2007) suggesting differences in the
partition of these compounds. Taken together, these results suggest that PFAS
exposure is ubiquitous in pregnant women and their newborns.

Although infants and young children are exposed to PFASs, data in these age
groups are still rather limited (Olsen et al. 2004a; Toms et al. 2009; Schecter et al.
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2012; Pinney et al. 2014; Kato et al. 2009b) in part because of the difficulties in
obtaining blood from newborns and young children. Using dry blood spots (DBS)
or residual specimens can overcome this limitation. In the United States, DBS are
collected routinely from newborns within 48 h of birth for the main purposes of
screening for metabolic and other health disorders. A couple of studies relied on
using residual newborn DBS stored by state public health departments to demon-
strate exposure to PFASs including PFOS, PFOA, PFNA, and PFHxS in Texas
(Kato et al. 2009¢) and New York infants (Spliethoff et al. 2008) (Table 3.2).

Three stadies, two in the United States and one in Australia, used residual serum
specimens collected during routine health exams to evaluate exposure to PFASs
among young children (Toms et al. 2009; Schecter et al. 2012; Kato et al. 2009b).
In the first study, researchers used 936 samples collected from U.S. children partici-
pants in NHANES in 2001-2002 to prepare pools that were analyzed for several
PFASs. Mean concentrations of PFOS, PFOA, PFNA, and PFHXS in these pools
were similar regardless of age (3-5 or 6-11 years) or sex, but were higher than the
mean concentrations reported in pools from adolescents and adults NHANES
2001-2002 participants (Kato et al. 2009b). In the second US study, PFASs were
detected in serum collected in late 2009 from 300 Texas children from birth through
12 years of age, several years after phasing out the manufacture of POSF-based
materials (Schecter et al. 2012). Of note, serum concentrations of PFOS, PFOA,
PENA, and PFHxS did not significantly differ by sex, unlike findings from adult
populations (Calafat et al. 2007a; Olsen et al. 2008; Bjermo et al. 2013; Dallaire
et al. 2009; Fromme et al. 2007b, 2009; Vassiliadou et al. 2010; Ericson et al. 2007;
Yeung et al. 2013a, b; Haines and Murray 2012; Ingelido et al. 2010; Ji et al. 2012;
Kato et al. 2011). By constrast, concentrations appeared to increase with age,
perhaps because the older children experienced higher exposures to PFASs in the
late 1990s—early 2000s when environmental levels of these compounds were higher.
In another study (Toms et al. 2009), investigators examined the concentrations of
several PFASs in pools made from individual sera collected in 2006-2007 in
southeast Queensland, Australia from 2,420 male and female donors between birth
to >60 years of age. PFOS, PFOA and PFNA were detected in all pools; PFOS was
detected at the highest mean concentration followed by PFOA. Concentration
differences by sex were not apparent among children <12 years, in agreement with
the results from the Texas children (Schecter et al. 2012), and concentration patierns
by age varied depending on the compound.

The relevance of sources and routes of exposure to certain PFASs in children
may differ from those in adults. For example, investigators reported higher serum
mean concentrations of selected PFASs, specifically PFHxS and 2-(N-methyl-
perfluorooctane sulfonamido) acetate (Me-PFOS A-AcOH), from U.S. children than
from adults (Olsen et al. 2004a). Me-PFOSA-AcOH is a known oxidation product
of 2-(N-methyl-perfluorooctane sulfonamido) ethanol, which was used primarily in
surface treatment applications for carpets and textiles (Olsen et al. 2003). PFHxS
was used as a building block for compounds incorporated in fire-fighting foams and
specific postmarket carpet treatment applications (Olsen et al. 2003). One explana-
tion for the apparent greater mean concentrations of PFHxS and Me-PFOSA-AcOH
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in children than in adolescents and adults was increased exposure among children
resulting from increased contact with carpeted floors and upholstered furniture
coupled with hand-to-mouth activity. Carpets and upholstered furniture are known
to trap dust, which may contain PFHxXS. In fact, the mean concentrations of PFHxS
in house dust samples collected in North America were higher than for other PFASs
(Kato et al. 2009a; Strynar and Lindstrom 2008; Beesoon et al. 2013) indoor dust
concentration data on Me-PFOSA-AcOH were also relatively high (Kato et al.
2009a).

Unlike lipophilic persistent organic pollutants such as polychlorinated biphenyls,
PFASs bind to plasma proteins (Butenhoff et al. 2012; Wu et al. 2009; Han et al.
2003). However, PFASs have also been detected in human milk (Kubwabo et al.
2013; Karrman et al. 2007a; Sundstrom et al. 201 1; Barbarossa et al. 2013; Guerranti
et al. 2013; Karrman and Lindstrom 2013; Croes et al. 2012; Fujii et al. 2012; Kadar
et al. 2011; Karrman et al. 2010; Liu et al. 2010; Llorca et al. 2010; Nakata et al.
2009; von Ehrenstein et al. 2009; Tao et al. 2008; So et al. 2006; Lankova et al.
2013), albeit at concentrations approximately one order of magnitude lower than in
serum. Therefore, breast milk can be a source of exposure to PFASs and nursing
may reduce the PFASs body burden in lactating women (Pinney et al. 2014;
Loccisano et al. 2013; Haug et al. 2011; Mondal et al. 2014).

3.6 Conclusions

Diet, drinking water, and indoor dust are important sources of human exposure to
PFASSs; in utero and lactational exposure to PFASs are also relevant for certain
segments of the population. Comparing PFASs concentrations among populations
is difficult because of differences in study design (e.g., age, sex, race of the popula-
tions examined), timing of sample collection, geographical location, and analytical
methodologies used (e.g., isomeric profiles). Interestingly, the concentration ranges
of the most commonly studied PFASs, PFOS and PFOA, are remarkably similar in
people worldwide, although important differences may exist (e.g., accidental
exposures; developed vs developing countries).

Due to regulatory and voluntary efforts to reduce emissions of PFASs, human
exposure to some of the PFASs appears to have decreased since the early 2000s.
However, PFASs are still ubiquitously detected in people around the world.
Concerns remain regarding the importance of past and present exposure sources on
the human body burden of PFASs and on the potential adverse health effects of such
exposures. Age; diet; route, frequency, and magnitude of exposure; potential
synergistic or antagonistic interactions among chemicals; and genetic factors,
among others, are critical in determining health outcomes associated with exposure
to PFASs and other environmental chemicals.

Biomonitoring efforts are important to facilitate the risk assessment of PFASs.
Comprehensive biomonitoring programs, such as NHANES and CHMS, provide a
reliable estimate of PFASs internal dose among the general population. In addition,
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future research should continue to improve our understanding of (i) determinants of
exposure to PFASs, (ii) PFASs toxicokinetics with emphasis on fetal and neonatal
exposures, when susceptibility to potential adverse health effects of environmental
chemicals may be highest, and (iii) specific populations with known source(s) of
exposure to evaluate potential health effects as well as the efficacy of intervention
strategies to reduce exposures.
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Chapter 4
PFAS Biomonitoring in Higher Exposed
Populations

Geary W. Olsen

Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have a wide range
of applications as a result of their chemical and thermal stability of the C-IF bond
and their hydrophobic and lipophobic characteristics. Because of these unique
physical and chemical properties there have been numerous industrial and consumer
applications. These characteristics have also resulted in the widespread presence
and persistence of PFAS in the environment and detection in biological tissue in
humans.

In general, biomonitoring trend studies of the PFAS, in particular PFOS and
PFOA, within the general population have shown marked declines in PFOS since a
May 2000 phase-out announcement by a major manufacturer. The trends, however,
for PFOA are more inconclusive as multiple manufacturers of PFOA and its various
precursors (e.g., fluorotelomer alcohols) remain.

Higher exposed populations can be defined by identifiable exposures (e.g.,
environmental, occupational) that have resulted in serum, plasma, or whole blood
concentrations of PFFASs that are substantively larger than those reported in the
general population. Although some investigators refer to these populations as
‘highly exposed’, this description does not sufficiently describe the magnitude of
exposure that occurs within these populations and/or individuals. Thus, the term
‘higher’ is preferred.

For the purpose of this chapter, higher exposed populations and their serum
concentrations are described into three categories: (1) PFAS manufacturing and
‘downstream’ production workers; (2) communities affected by specific identifiable
sources of PFAS exposure (above background levels) through municipal and/or
private water sources; and (3) medical, occupational, and consumer PFAS-related
exposures that were targeted to a well-defined group of individuals. Each of these
three higher exposure populations are reviewed separately for their biomonitoring
data and then compared jointly.
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PFAS manufacturing workers had serum concentrations 2-3 orders of magnitude
higher than those reported in the general population. Depending upon the communi-
ties whose drinking water sources were affected with PFAS, these populations
tended to have average serum concentrations ranging between 2x and <1 order of
magnitude higher than the general population. Individuals, however, within these
communities may have had comparable concentrations to those at the higher levels
within the manufacturing sector. Likewise, depending on the specific medical, occu-
pational, and/or consumer exposures, there may have been substantively higher
exposures to PFOS and PFOA than reported in the general population.

Keywords Perfluorochemicals ¢ Perfluoroalkyl and polyfluoroalkyl substances
PFAS « Perfluorooctanesulfonate = PFOS e Perfluorooctanoate ¢ PFOA
Biomonitoring

4.1 Imtroduction

4.1.1 Brief Review of General Population Trends

As discussed in Chap. 1 (Lau 2014), perfluoroalkyl and polyfluoroalkyl substances
(PFAS) have a wide range of applications as a result of their chemical and thermal
stability of the C-F bond and their hydrophobic and lipophobic characteristics.
Because of these unique physical and chemical properties there are numerous
industrial and consumer applications. These include surfactant (e.g., use in
fluoropolymer synthesis, coatings, and aqueous film-forming-foams (AFFF)) and
polymer applications (e.g., use in textiles as stain and soil repellents (e.g., carpet,
clothes) and grease-proof, food contact paper) (Buck et al. 2011).

Because of their widespread presence and persistence in the environment and
detection in biological tissue in humans, there has been an effort to understand
PFAS exposure sources and pathways as well as potential associations with human
health. In particular, this exposure research has focused on ‘long chain’ PFASs
defined as perfluoroalkyl sulfonic acids with six or more perfluorinated carbons and
perfluoroalkyl carboxylic acids with six or more perfluorinated carbons, respec-
tively (Buck et al. 2011).

Multiple sources of potential exposure to PFAS in the environment have been
identified in the general (nonoccupational) human population. These sources
include food intake and packaging, drinking water (municipal and private wells),
indoor (house and office) and outdoor air, and dust (Fromme et al. 2009; Domingo
2012). Dietary intake has been considered an important source of human exposure
by some investigators (Fromme et al. 2009; Domingo 2012) but others have
questioned this assumption noting the declining PFOS concentrations in the general
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population without comparable declines of PFOS in the diet suggesting indirect
sources of exposure through transformation of precursors (D’Eon and Mabury
2011; Buck et al. 2011). Although precursors of perfluorooctanesulfonate (PFOS)
and perfluorooctanoate (PFOA) have not been considered a major source of expo-
sure, subgroups of the population may be at higher risk. In general, PFAS in munici-
pal water supplies are measured in the very low ng/L levels unless the community
has been affected by specific industrial and/or environmental exposures (Fromme
et al. 2009).

As detailed in the previous chapter, PFAS biomonitoring trend studies of general
populations have been conducted in the United States (Kato et al. 2011; Olsen et al.
2012a), Australia (Toms et al. 2014), Germany (Yeung et al. 2013a, b), Norway
(Ngst et al. 2014), and Sweden (Glynn et al. 2012; Sundstrom et al. 2011). Few
trend studies have involved repeated measurements from the same, albeit small
number, of individuals (Olsen et al. 2012a; Ngst et al. 2014). The other biomonitor-
ing trend studies were periodic cross-sectional analyses of a general population.
Collectively, these studies have analyzed and reported on 23 PFASs although only
two, PFOS and PFOA, were routinely reported in these and many other studies. In
general, these biomonitoring trend studies have shown declines in PFOS in the
general population since the May 2000 announcement of the phase-out of perfluo-
rooctanyl related materials by the 3M Company (3M). Results, however, for PFOA
were more inconclusive as other manufacturers of PFOA remained after this phase-
out including production of potential PFOA precursors (e.g., 8:2 fluorotelomer
alcohol) (Buck et al. 2011; Fasono et al. 2006).

The 23 PFASs included a series of perfluoroalkyl sulfonic acids [perfluorobu-
tanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), several precursors of
PFOS, the homologue series of perfluoroalkyl carboxylic acids (C4 through C12),
and their various precursors. The precursors of PFOS included N-ethyl
perfluorooctanesulfonamidoacetate (EtFOSAA), an oxidation product of N-ethyl
perfluorooctanesulfonamidoethanol (EtFOSE) which was primarily used in the
building block of the phosphate ester in paper and packaging protectant
applications, and N-methyl perfluorooctanesulfonamidoacetate (MeFOSAA), an
oxidation product of N-methyl perfluorooctanesulfonamidoethanol (MeFOSE)
that was primarily incorporated into polymer surface treatments for carpet and
textile applications (Buck et al. 2011; Yeung et al. 2013b). Both compounds likely
metabolize to perfluorooctanesulfonamidoacetate (FOSAA) and then to perfluo-
rooctanesulfonamide (FOSA) (Xu et al. 2004, 2006). FOSA metabolizes to
PFOS. FOSA can also be a metabolite of EtFOSE-based polyfluoroalkyl phos-
phate ester (di-SAmMPAP) used in food contact paper. Precursors of perfluoroalkyl
carboxylic acids include several polyfluoroalkyl phosphate esters which are a
class of fluorotelomer-based commercial products of various fluorinated chain
lengths with phosphate mono-, di-, or triesters (Yeung et al. 2013b) and the 8:2
fluorotelomer alcohol (Fasono et al. 2006, 2009).
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4.1.2 Higher Exposed Populations

For the purpose of this chapter, “higher exposed” populations were defined by
identifiable exposures (e.g., environmental, occupational) that resulted in larger
serum, plasma, or whole blood concentrations of PFASs than those reported in
the general population. Although some investigators refer to these populations as
‘highly exposed’, this description does not sufficiently describe the magnitude of
exposure that occurs in these populations. A community may be referred to as
“highly exposed” to PFASs but could be orders of magnitude lower than an occupa-
tionally exposed population, or, as will be discussed later, comprise individuals that
may have exposures higher than individuals who are occupationally exposed
through manufacturing. Unlike the general population, biomonitoring of higher
exposed human populations have, in general, reported fewer PFAS compounds.
This may be due to the specificity of exposure and therefore more targeted
measurements. Nevertheless, PFOS and PFOA remain the most frequently measured
compounds regardless of the type of population studied.

For the purpose of this chapter, higher exposed populations are categorized as
follows: (1) PFAS manufacturing and ‘downstream’ production workers; (2) com-
munities affected by specific identifiable sources of PFAS exposure (above
background levels) through municipal and/or private water sources; and (3) medi-
cal, occupational, and consumer PFAS-related exposures that were targeted to a
well-defined group of individuals. Each of these three categories will be reviewed
separately for the biomonitoring (serum, plasma, whole blood) data reported, and
then compared jointly in the chapter summary.

Provided in this chapter are summaries of PFAS concentrations measured in
these higher exposed populations. The primary PFASs reviewed are PFOS and
PFOA due to the frequency of measurement and reports. Not discussed in this
chapter are the analytical methods and quality control procedures that were
employed by the study investigators. An overview of the analytical laboratory
methods that have evolved over time to measure PFASs can be found in Chap. 2.
The original papers cited in this chapter should be examined by the reader to assess
the precision and reliability of the analytical capabilities that were employed by the
study investigators at the time of their analyses.

4.2 PFAS Manufacturing and ‘Downstream’ Production

Prior to its phase-out of perfluorooctanyl chemistry, the 3M Company was consid-
ered the primary manufacturer of perfluorooctanesulfonyl! fluoride (POST)-related
materials but only one of several manufacturers/users of PFOA. Furthermore, there
were other fluorochemical manufacturers whose product line (e.g., fluorotelomer
alcohols) may degrade, to a limited degree, to PFOA. At 3M, POSF and PFOA
were manufactured through electrochemical fluorination (ECF) that yielded
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characteristic linear to branch isomer ratios (Buck et al. 2011). PFOA can also be
manufactured by telomerization that results in a linear isomer. Because of its
widespread environmental presence and persistence, in 2006 the US EPA invited
eight fluoropolymer and telomer manufacturers to participate in a global steward-
ship program focused on the goal of working towards the elimination of PFOA and
precursor chemicals as well as higher homologues by 2015 (US EPA 2006). These
companies were Arkema, Asahi, BASF (successor to Ciba), Clariant, Daikin, 3M/
Dyneon, DuPont, and Solvay Solexis.

Similar agreements have been obtained in other nations including perfluorocar-
boxylic acids in Canada (Environment Canada 2010) and PFOS in European Union
countries (Buropean Parliament 2006). PFOS was listed as an Annex B (restricted
in its use) substance in the Stockholm Convention on Persistent Organic Pollutants
(UN Environmental Programme 2009). Upon 3M’s phase-out of PFOS production,
the production of POSF-related materials in some countries, particularly China,
increased (Zhang et al. 2012; Xie et al. 2013).

Among the fluorochemical, fluoropolymer and fluorotelomer manufacturers, 3M
and DuPont have frequently published their biomonitoring data and therefore this
information was available in peer-reviewed scientific literature and publicly
accessible repositories of information (e.g., AR-226 docket of the US EPA). One
other company, Miteni, had published company-specific biomonitoring (PFOA)
data in the published scientific literature (Costa et al. 2009), prior to this company’s
phase-out of PFOA. It is possible that other PFAS biomonitoring analyses of
fluorochemical and fluoropolymer manufacturing workers may have been analyzed
but such information was not available in the published scientific literature.

4.2.1 3M Company

There have been four 3M Company manufacturing plants involved with the manu-
facture of PFAS-related materials located in the United States (Cottage Grove,
Minnesota; Decatur, Alabama; Cordova, [llinois) and Belgium (Antwerp).

4.2.1.1 Cottage Grove (Minnesota)

The Cottage Grove plant manufactured the ammonium salt of perfluorcoctanoic
acid (APFO). APFO rapidly dissociates in the blood to PFOA (the anion) where it
is bound to proteins. APFO production began at the Cottage Grove plant in 1947
and was phased-out after the May 2000 announcement by the company. Primary
users included external customers (major customer was DuPont) and internal appli-
cations within the 3M/Dyneon operations. The production of APFO was a multi-
step process that included the following steps (Olsen et al. 2000, 2003a):
electrochemical fluorination, stabilization, fractionation, distillation, purification,
the addition of ammonium, drying of the salt, and packaging. The production of the
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APFO could result in potential for inhalation exposure of the vapor or particulate
from regular production tasks and equipment cleaning responsibilities (Raleigh
et al. 2014). Exposure may also have occurred from incidental spills and back-
ground air concentration levels. Dermal and ingestion were other potential exposure
pathways although deemed less likely than inhalation.

Salts of perfluorooctanesulfonate (PFOS) were manufactured at Cottage Grove
but since the 1970s perfluorooctanesulfonyl fluoride (POST), the starting material
for related materials, was manufactured, through the ECF process, elsewhere
(Decatur and Antwerp). Salts of shorter chain PFASs have also been manufactured
at Cottage Grove (Olsen et al. 2003a, 2009).

Serum total organic fluorine (TOF) was used to estimate Cottage Grove workers’
serum PFOA concentrations in the 1980s until 1993 when PFOA was then speciated
by high performance liquid chromatography mass spectrometry (Gilliland and
Mandel 1996; Olsen et al. 1998, 2000). TOF was considered not sufficiently specific
for PFOA due to the potential for other perfluoroalkyl exposures to contribute. This
includes the longer chain PIFOS and more recently short-chain perfluoroalkyls at
this facility (e.g., lithium bis(trifluoromethane-sulfonyl)imide, potassium salt of
perfluorobutanesulfonate). Historic TOF measurements at Cottage Grove also used
a higher limit of quantitation (LOQ)< 1.0 ppm (Gilliland and Mandel 1996). As a
consequence, many jobs with PFOA exposures could not be quantified. For exam-
ple, of the 115 Cottage Grove workers who volunteered for the 1990 fluorochemical
medical surveillance program, 23 (20 %) had TOF values reported <1.0 ppm
(Gilliland and Mandel 1996).

Beginning in 1993, measurement of serum concentration of PFOA was included
in the periodic voluntary medical surveillance programs in the chemical division.
The median PFOA concentrations reported in 1993 (n=111), 1995 (n=80), 1997
(n=74), and 2000 (n=148) were 1,100 ng/mL., 1,200 ng/mL, 1,300 ng/mL, and
810 ng/mL., respectively, with mean concentrations approximately five times higher
as a consequence of the log normal distribution (Olsen et al. 2000, 2003a; Olsen and
Zobel 2007). The great majority of participants were male workers. The highest
PFOA concentration measured was 114,100 ng/mL in 1997 (Olsen et al. 2000).
PFOA and PFOS concentrations were production process-related as seen in Fig. 4.1
for the 117 male employees who participated in 2000. These data indicate TOF
would be a biased estimate for either PFOA or PFOS at the Cottage Grove facility.

Because of these limitations using TOF to estimate PFOA at the Cottage Grove
site, Raleigh et al. (2014) incorporated PFOA air sampling data, both personal and
environmental, in their task-based job/department exposure matrix for their Cottage
Grove cohort mortality and cancer incidence study. Industrial hygiene data
characterizing APTFO exposure in the air within the chemical division (205 personal
samples and 659 area samples) were collected between 1977 and 2000. These
samples represented all processes and tasks related to APFO production. Production
processes prior to 1977 involved the same procedures and tasks but exposure was
less due to lower production volume. An air (mg/m®) time-weighted average (TWA)
was calculated for APFO exposure for specific department, job, work area, equip-
ment, tasks, and year groupings to create an exposure data matrix that contained 23
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Fig. 4.1 Cottage Grove Manufacturing site, geometric mean serum PFOS and PFOA concentra-
tions, medical surveillance program by major job classifications, (N=117) male employees, 2000

departments and 435 job titles within the chemical division for all production years
(1947-2002). This task-based exposure model incorporated the amount of time
spent during an 8 h shift in up to three predefined work task areas: (1) exposure-
associated tasks in the production area, (2) nonexposure associated tasks in the pro-
duction area, and (3) tasks outside the production area. TWAs for jobs in APFO
production ranged from 1x10™* mg/m? to 4.0x 10! mg/m®. TWAs estimated for
non-APFO production areas within the chemical division were estimated to range
between 1x10% mg/m?® and 3x 10~ mg/m>. Exposures within the non-chemical
division were considered to be between 1x107® mg/m® and 1x107° mg/m?.

As a measure of external validity, Raleigh et al. (2014) reported PFOA concen-
trations for the year 2000 fluorochemical medical surveillance program’s 50 partici-
pants who worked only in the APFO-related manufacturing area had a geometric
mean serum PFOA concentration of 2,538 ng/mL (95 % CI 1,626--3,961 ng/mL).
Those who partially worked in the APTO production area had a geometric mean
PFOA of 979 ng/mL (95 % CI 565 ng/mL-1,695 ng/L). Those who never worked
in the PFOA manufacturing area but still within the chemical division had a geomet-
ric mean PFOA of 282 ng/mL (95 % CI 194-410 ng/mL).

Materials derived from perfluorobutanesulfonyl fluoride (PBSF) have been intro-
duced by 3M as replacement chemistry for some PFOS-related materials. The
N-alkyl derivatives of perfluorobutanesulfonamides are used in various applications
including fabric, carpet, and upholstery protectants as well as surfactant applica-
tions. Atmospheric degradation of N-methyl perfluorobutanesulfonamidoethanol
has been shown to produce among other degradation products, PFBS (D’eon et al.
2006). Six Cottage Grove employees who had finished a semi-annual batch produc-
tion of the potassium salt of PIBS participated in a 6-month follow-up
pharmacokinetic-related study (Olsen et al. 2009). At study onset, shortly after
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production was completed, the employees’ mean serum PFBS concentration was
397 ng/mL (range 92-921 ng/mL). At study completion the geometric mean serum
elimination half-life was calculated at 25.8 days (95 % CI 16.6-40.2) as compared
to 4.8 years (95 % CI 4.0-5.8) for PFOS in a study of 26 retired fluorochemical
production workers (Olsen et al. 2007). Urine was a major route of PFBS elimina-
tion as concentrations early in the study ranged from 5 to 173 ng/mL and declined
during the study such that all measurements by end-of-study were less than the
LOQ (5 ng/mL). ECF production of PBSF occurs at the 3M Antwerp and Cordova
plants. Production of PFBS-related materials has occurred at all four 3M plants
(Cottage Grove, Decatur, Cordova, Antwerp).

4.2.1.2 Decatur (Alabama)

The 3M Decatar manufacturing site consists of two plants: Specialty Film (film
plant) and Specialty Materials (chemical plant) (Olsen et al. 1999b, 2003b). PFASs
were not significantly used in the film plant except for one product line. On the other
hand, hundreds of different manufacturing processes were run in the chemical plant
with the majority batch operations that occurred in several buildings. The three
major product groups were: protective chemicals, performance chemicals, and
fluoroelastomers. Raw materials and intermediates for each product group went
through several different production buildings before packaging and shipment.
Perfluorooctanesulfonyl fluoride (POSF) was the base chemical until its phase-out
announced in 2000. Essentially, octyl mercaptan reacted with chlorine and ammo-
nium to produce octanesulfonyl fluoride (OST). OSF became the cell feed for ECF
to produce POSF, the precursor to the production of a variety of perfluorinated
amides, alcohols, acrylates, and other fluorochemical polymer materials manufac-
tured as protective and performance chemicals. PFOA was also manufactured by
ECF for limited time periods at Decatur. This production occurred in the majority
of months in 1969, 1977, 1978, 1999, and 2000 and a few months in 1967, 1970,
and 1972-1974 (personal communication, David Courington). PFOA was also
produced as a by-product (residual) of POSF ECF. Also manufactured were inter-
mediate products and surface active chemicals (e.g., AFFFs). PFHxS was produced
via the ECF process for use primarily in performance chemicals such as fire sup-
pression liquids. Fluoroelastomers were manufactured from combinations of tetra-
fluoroethylene, chlorotrifluoroethylene, hexafluoropropylene and vinylidene
fluoride. Upon the phase-out of PIFOS, the shorter chain PBSF replaced POSF as the
basic building block for protective and performance chemicals. ECF production of
PBSF occurs at the Cordova, Illinois and Antwerp, Belgium manufacturing plants.
The ECT operations at Cottage Grove and Decatur were demolished after the com-
pany’s phase-out of perfluorooctanyl products (Olsen et al. 2012 b).

Prior to 1995, serum TOF was measured in the Decatur voluntary medical sur-
veillance examinations. Beginning in 1995, PFFOS was specifically measured by
liquid chromatography-tandem mass spectrometry (LC-MS/MS) during these
examinations (Olsen et al. 1999a), as well as PFOA. In 1998 a random sample of the
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chemical and film plant employee population was examined for several PFASs with
statistical analyses stratified by the workers’ major job categories (Olsen et al.
1999b, 2003b). A total of 126 chemical plant employees participated in the random
sample (80 % of targeted sample). Presented in Table 4.1 are measures of central
tendency from this study. The geometric mean serum concentrations for PFOS and
PFOA were 941 ng/mL and 899 ng/mL, respectively. The highest PFOS and PFOA
concentrations were 10,600 ng/mL and 6,760 ng/mL, respectively. [Note: The high-
est PFOS concentration ever reported at Decatur was 12,830 ng/mL in an employee
in the 1995 voluntary medical surveillance examinations (Olsen et al. 1999a).]
Presented in TMig. 4.2 are the geometric mean (GM) concentrations reported for five
PFASs stratified by seven major job categories from this Decatur random sample of
employees. Findings from this study showed that combined serum concentrations of
PFOS and PFOA accounted for 86 % of the serum TOF that was measured. This
suggested historical TOF measurements could not be considered specific to any one
PFAS.

In 2000, at the onset of the company’s announced phase-out, a total of 263
Decatur employees voluntarily participated in the medical surveillance program
(Olsen et al. 2001a, 2003a; Olsen and Zobel 2007). Except for PFOA, the serum
concentrations were comparable to those measured in the 1998 random sample
(Table 4.1). The geometric mean serum PFOA concentration had increased due to
the start-up of ECF production of PFOA in 1999.

A total of 24 of the 26 retirees that were followed for 5 years to estimate their
serum elimination half-life were from the Decatur plant (Olsen et al. 2007). The
other two retirees were from the Cottage Grove plant. This study calculated geomet-
ric mean half-lives of PFOS and PFOA of 4.8 years (95 % CI 4.0-5.7) and 3.5 years
(95 % CI 3.0-4.1). Russell et al. (2014) estimated the half-life for PFOA among
those retirees (n=7) whose initial concentrations were >500 ng/mL was 3.0 years
(95 % CI 2.4-3.8). This would result in minimal bias (1 %) in the calculation of an
intrinsic half-life for PFOA due to the highly elevated initial concentrations and
long sampling duration of almost two half-lives. Analysis of the apparent half-lives
of retirees whose initial concentrations were less than 500 ng/mL had biased upward
estimates up to 13 % with the lowest initial concentrations (~70 ng/mL) (Russell
et al. 2014).

4.2.1.3 Cordova (Illinois)

3M Cordova manufactures specialty chemicals, adhesives, and fluorinated chemicals
for the company’s internal and external customers. As part of this product-mix, the
plant manmufactures PBSF, C3/C4 acid fluorides, and hydrofluoroethers. Unlike
Cottage Grove or Decatur, the Cordova plant was not a primary manufacturer of
APFO or PFOS-related materials, One production that did occur was that of a post-
market carpet protectant. Voluntary biomonitoring of Cordova employees was con-
ducted in 1997 (n=66). Median concentrations of PFOS and PFOA were 151 ng/
mL and 100 ng/mL., respectively.
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Fig. 4.2 Decatur manufacturing site, geometric mean serum PFOS and PFOA serum concentra-
tions (ng/mlL) by major job classifications, random sample (N=128), 1998

4.2.1.4 Antwerp (Belgium)

Beginning in the mid-1970s and similar to Decatur production processes, POST was
the base material produced by ECF at the Antwerp plant that was the precursor to
the production of PIFOS-based protective and performance materials (Olsen et al.
2001b). Also manufactured were intermediate products, end-products (PFOA),
inerts, and surface active chemicals (fire fighting foams). Synthetic fluoroelasto-
mers were manufactured from hexafluoropropylene and vinylidene fluoride.
Nonfluorochemical production involved phenolic resins, acrylate polymers and

adhesives, polyurethane polymers, and acrylates.

Beginning in 1995, voluntary participation by employees in medical surveillance
activities involved LC-MS/MS measurement of PFOS and PFOA (Olsen et al.
1999a, 2001b, 2003¢; Olsen and Zobel 2007). These analyses showed serum PFOS,
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Fig. 4.3 Antwerp manufacturing site, geometric mean serum PFOS and PFOA concentrations
(ng/mL), by major job classifications, medical surveillance program (N=258), 2000

PFOA, and other PFAS-related serum levels were generally lower than those
observed among Decatur employees. For example, in 1995 and 1997 the mean
PFOS concentrations in Antwerp workers were 1,930 ng/mL and 1,480 ng/mL
compared to the Decatur workforce at 2,440 ng/mL and 1,960 ng/mL., respectively
(Olsen ct al. 19994, b).

In the 2000 voluntary medical surveillance examinations, the Antwerp mean
serum PFOS and PFOA concentrations were 800 ng/mL and 840 ng/mlL, respec-
tively. The distributions were log normal as the geometric means were 440 ng/mL
and 330 ng/mL, respectively (Table 4.1). Highest PFOS and PFOA concentrations
measured in 2000 at Antwerp were 6,240 ng/mL and 7,040 ng/mL, respectively.
Figure 4.3 shows the geometric mean concentrations for five PFASs stratified by
seven major job categories from the 2000 Antwerp medical surveillance data.

4.2.1.5 Decommission, Demolition and Disposal Activities
(3M Cottage Grove and Decatur)

PFAS biomonitoring was conducted among workers who decommissioned, demol-

ished and disposed of former PFAS manufacturing facilities (Olsen et al. 2012b).
These facilities included the APFO manufacturing buildings at Cottage Grove and
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the ECT cell building operations at Decatur. Decommission work involved pipe and
equipment removal and disposal. Because of the uniqueness of this work, the extent
of potential exposures was unknown. Therefore, as part of the decommissioning
work, an exclusion work zone was established that required anyone entering the
area to have appropriate training, personal protective equipment, and participate in
a medical monitoring program. The latter included baseline and end-of-project
blood collections for the determination of PFOA and PFOS serum concentrations.
A total of 204 individuals (primarily contract workers) completed the baseline and
end-of-project assessments. Of these individuals, 120 (59 %) had PFOA and PFOS
baseline concentrations comparable to that measured in the general population
(Kato et al. 2011; Olsen et al. 2012a). Among these 120 individuals their matched
pair median change and interquartile range for PFOA was 5.3 ng/mL (0.5-32.6) and
0.7 ng/mL ((-1.0)-4.7), respectively. Their mean matched-pair changes were PFOA
44.2 ng/ml (p<0.0001) and PFOS 4.2 ng/mL (p<0.0001). These biomonitoring
results suggested an increase in serum PFOA concentrations, and lesser so for
PFOS, among workers who were engaged in this decommissioning, demolition, and
disposal work.

4.2.2 DuPont Washington Works (Parkersburg, WV)

Fluoropolymer production began at the DuPont Washington Works plant in 1951
(Woskie et al. 2012). APFO was used as a surfactant in the emulsion polymerization
of tetrafluoroethylene (TFE) to make polytetrafluoroethylene (PTTE) whose variety
of products, included use in non-stick pans and water repellent clothing. Brand
names were sold under the labels Teflon® and Gore-tex®. PFOA was not consid-
ered incorporated into the final product of these fluoropolymers (Kreckmann et al.
2009). Other production applications included wire and cable, inert tubing, and
semiconductors. APFO was also used in co-polymer production of fluorinated
ethylene propylene (FEP) and perfluoroalkoxy (PFA) polymer. Depending on time
periods, PFOA was used as either a powder or premixed liquid form for these
polymer and co-polymer production processes.

TOF was measured as a surrogate for PFOA in the blood prior to laboratory
capabilities to speciate for PFOA. Between 1972 and 1981 whole blood analysis for
TOF used the Wickbold torch method followed by a spectrophometric method of
detection (Woskie et al. 2012). Beginning in 1981, the whole blood analyses were
converted to a gas chromatography with electron capture detector method (GC-ECD)
that specifically quantified PFOA. Beginning in 2003, PFOA measurements were
subsequently analyzed using high pressure LC/MS-MS methods using a serum
matrix. Based on an analysis of 114 samples by both the Wickbold and GC-ECD
methods, a correction factor was applied to the TOF data to convert to GC-ECD
PFOA analysis equivalents and then these whole blood PFOA measurements were
subsequently adjusted to serum PFOA equivalents.
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Kreckman et al. (2009) used actual serum PFOA measurements from 1,025
Washington Works workers that were obtained in a cross-sectional health study in
2004. They combined these data with current job titles to derive three relative APFO
similar exposure categories. The mean of the serum PFOA measurements for each
job exposure category served as an intensity factor. The job exposure categories
were applied to historical job titles and validated with PFOA measurements
collected among voluntary participants between 1979 and 2002. A cumulative
exposure matrix was derived.

Woskie et al. (2012) expanded on this methodology to predict serum PFOA
levels over time at this DuPont Washington Works site for the following eight plant
workplace categories:

1. Fine powder/granular polytetrafluoroethylene (PTFE) job categories (direct
exposure to PFOA).

2. Fluorinated ethylene propylene (FEP) and perfluoroalkoxy fluoropolymer (PFA)
job categories (direct exposure to PFOA).

3. Non-PFOA use in Teflon polymer and co-polymer production job category (inter-
mittent direct or plant background PFOA exposure). Included two subcategories:

(3a) Teflon polymer co-polymer production department category (intermittent
direct PFOA exposure). This included ethylene-tetrafluoroethylene fluo-
ropolymer and fluorotelomer co-polymer operations.

(3b) Tetrafluoroethylene (TFE) monomer operation category (plant background
PFOA exposure).

4. Maintenance job category (intermittent direct or plant background PFOA expo-
sures). Included two subcategories:

(4a) Assigned to Teflon/co-polymer maintenance job category (intermittent
direct PFOA exposure).

(4b) Not assigned to Teflon/co-polymer maintenance job category (plant back-
ground PFOA exposure).

A

. Non-Teflon/co-polymer production division with no PFOA-use job category
(plant background PFOA exposure). Included two subcategories:

(5a) Jobs considered potentially exposed to PFOA in either (1), (2), (3), or
(4) above (intermittent direct PFOA exposure).
(5b) Jobs not exposed to PFOA (plant background PFOA exposure).

Linear mixed models were developed to predict serum PFOA concentrations for
each DuPont plant employee and year of their work history for the above eight job
category/job group combinations. These retrospective models took into account
individual and repeated measures from a collective sample of 2,125 serum measure-
ments from 1,308 workers collected between 1979 and 2004. Of the 2,125 samples,
the median and mean serum PFOA concentrations were 580 ng/mL and 2,050 ng/
mL, respectively. The highest PFOA measurement was 59,400 ng/mL that was
measured in a worker involved with PTEFE production. Figure 4.4 shows the median
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Fig. 4.4 DuPont Washington Works plant, median serum PFOA concentrations, (2,125 Samples)
by five major job classifications, 1979-2004

serum PFOA concentrations from the samples for the five major job groups
described above.

Covariates considered in the linear mixed models included workers’ cumulative
years worked, historical production of APFO used or emitted by the plant (Fig. 4.5)
and the time where major process changes may have influenced workers’ exposure.
Predicted serum PFOA concentrations prior to 1979 were largely influenced by
either the amount of PFOA used (direct or indirect exposure) or amount emitted
(plant background exposure). From these linear mixed models, estimated weighted
predicted annual median serum PFOA concentrations for all workers with potential
exposure to PFOA reached the highest level of approximately 0.8 ppm (800 ng/mL)
in the late 1980s (Fig. 4.6a). Among workers unexposed to PFOA, the highest pre-
dicted annual median concentration was in the 0.2 ppm (200 ng/ml) range
(Fig. 4.6b). Data from these annual prediction serum PFOA models were used in an
epidemiologic cohort mortality analysis of this plant population (Steenland and
Woskie 2012).

The modeled estimated median serum PFOA levels, by year, are shown for
workers in job groups with direct exposure (Fig. 4.7). [Note: Figs. 4.7 and 4.8 are
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Fig. 4.5 Annual amount of PFOA used at the DuPont plant (Ibs/year) and the estimated annual
PFOA emissions from the plant (Reprinted from Woskie et al. 2012, by permission of Oxford
University Press)

adapted from Woskie et al. (2012) who presented the data in ppm (pg/mL) units.
[Note: Multiply by 1,000 to derive ppb (ng/mL) levels.] The increase in serum
PFOA concentrations until 1980 among workers with direct exposure reflected the
increase in annual PFOA uvse (Fig. 4.5). Although PFOA use increased substantially
after 1980, there was a decline in estimated median PFOA concentrations from
these models among the chemical and finish operators in the Fine Powder/Granular
PTEE category. This was the consequence of the implementation of several exposure
controls including the replacement of weighing powdered PFOA with premixed
liquid PFOA, a dryer scrubber, and use of personal protective equipment. Estimated
median serum concentrations of the FEP/PTA operator were also influenced by
operational changes over time. Annual production use also influenced predicted
median PFOA concentrations among job groups with intermittent direct or plant
background PFOA exposure (Fig. 4.8).

4.2.3 Other APFO and Fluoropolymer Manufacturers

Besides 3M and DuPont plants discussed above, few other APFO manufacturing,
fluoropolymer, and/or fluorotelomer manufacturing companies have published
employee PFAS biomonitoring data in the scientific literature. This does not neces-
sarily infer that biomonitoring analyses of these company workers have not been
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Fig. 4.6 Stem and leaf plots of the model estimated weighted annual median serum PFOA levels
(ppm) for the full cohort of DuPont workers for those in job groups (see text) with potential PFOA
exposure during the calendar year (a) and without potential (b). Box plots show the minimum,
maximum, 25th and 75th percentiles and median (Reprinted from Woskie et al. 2012, by permis-
sion of Oxford University Press)

performed — just that nothing was found available in the scientific literature. The US
EPA’s 2010/2015 PFOA Stewardship Program (US EPA 2006) identified eight
major fluoropolymer and telomer manufacturers: Arkema, Asahi, BASF (formerly
Ciba), Clariant, Daiken, 3M/Dynecon, DuPont, and Solvay Solexis.
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Fig. 4.7 Median serum levels estimated from models for workers in job groups with direct
exposure to PFOA during the year (Reprinted from Woskie et al. 2012, by permission of Oxford
University Press)
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Fig. 4.8 Median serum levels estimated from models for workers in job groups with intermittent
direct or plant background PFOA exposure to PFOA during that year (Reprinted from Woskie et al.
2012, by permission of Oxford University Press)
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After the 3 M phase-out of PFOS-related materials, it appears many small scale
POSF-based Chinese manufacturers expanded their production capabilities. Several
PFOS-based companies have been identified to operate in Hubei and Fujian
provinces.

Besides PFOS, APFO, fluoropolymer and telomer manufacturers, there are
‘downstream’ users of PFAS-related malerials that need to be considered for
biomonitoring of their workforce (Butenhoff et al. 2006). These ‘downstream’ users
include the carpet, textile, mill, paper (food-protectant applications), semi-
conductor, and metal plating industries.

4.2.3.1 Polytetrafluoroethylene (PTFE) Plants (DuPont, Dyneon,
Asahi, Solvay Solexis)

Consonni et al. (2013) reported a cohort study of PTFE production workers from
four companies consisting of six manufacturing sites: Dyneon (Gendorf, Germany);
Solvay Solexis (Spinetta Marengo, Italy); Asahi (Hillouse UK; and Bayone, NI,
USA); and DuPont (Dordrecht, Netherlands and the Washington Works plant
located near Parkersburg, WV, USA). A total of 5,879 workers were in this cohort
which included 2,379 from the DuPont Washington Works plant discussed above
(this was approximately 40 % of the DuPont Washington Works overall cohort
reported by Steenland and Woskie 2012). Consonni et al. developed a job exposure
matrix with yearly semi-quantitative estimates (in arbitrary units) of both TFE and
APFO exposure at each of the six plant sites. These semi-quantitative arbitrary units
of TFE and APFO exposure were highly correlated (*=0.72, p<0.0001).

The PTFE production processes are closed systems because of TFE’s explosive
nature. The potential for TFE exposure, however, could still occur through opening
autoclaves in the polymerization area or decomposition of PTFE. Consonni et al.
(2012) estimated historic TFE exposure in this cohort could have been up to a few
parts per million. Overall findings of this multi-plant cohort included modestly
elevated standardized mortality ratios (SMRs) for cancer of the liver and kidney,
and leukemia (see reviewsin Chap. 14 and Chang et al. 2014). [Note: the International
Agency for Research on Cancer (IARC) recently evaluated PFOA as a group 2B
(possible) human carcinogen. They evaluated TI'E as a group 2A (probable) human
carcinogen (Benbrahim-Tallaa et al. 2014).] Consonni ct al. stated that these effects
could not be disentangled between the highly correlated TFE and APFO exposure
based on their semi-quantitative arbitrary units of analysis.

This inability to disentangle the reported associations with APFO and TLE,
however, differed from the conclusion by Steenland and Woskie (2012) who
reported APFO exposure response trends for liver and kidney cancer and leukemia
in the DuPont Washington Works cohort study. Steenland and Woskie discounted
the potential for TFE exposure in their DuPont Washington Works cohort study
because they believed appreciable exposures to TFE were unlikely during normal
operations because of its explosive nature. As a point of clarification, it should be
noted that the lower explosion limit for TFE is 110,000 ppm (ACGIH 1997). The
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8 h time-weighted average (TWA) for TFE is 2 ppm. Therefore, it is likely that low
level TFE exposures could have occurred given the disparity between exposure lev-
els between the TWA and the lower explosion limit. It should also be noted that the
3M Cottage Grove plant (discussed above) that manufactured APFO was not a
PTFE production plant and therefore the exposure at this 3M plant was done in near
isolation of any TFE exposure (Raleigh et al. 2014).

4.2.3.2 Miteni Plant (Trissino, Italy)

PFOA had been produced by ECF since 1968 at the Miteni plant in Trissino, Italy
(Costa et al. 2009). It was not stated whether ECF production of POSF occurred at
this facility. Worker biomonitoring for PFOA began in 2000 and continued annually
through 2007 (Costa et al. 2009). For the 25-50 PTFOA production workers who had
serum measurements evaluated between 2000 and 2007, their geometric mean
serum concentrations were 11,700 ng/mL, 10,200 ng/mL, 9,300 ng/mL, 6,900 ng/
mL., 6,500 ng/mL, 5,800 ng/mL and 5,400 ng/mlL., respectively. Maximum serum
PFOA concentrations measured were >45,500 ng/mL (upper limit of quantitation),
>45,500 ng/mL (upper limit of quantitation), 91,900 ng/mlL, 74,700 ng/mL,
46.300 ng/mL, 41,900 ng/mL, and 47,000 ng/mL, respectively. Declining concen-
trations of PFOA were observed after 2002 following several workplace exposure
reduction activities. PFOA is no longer manufactured at this facility.

4.2.3.3 Arkema Plant (Pennsylvania)

A series of cross-sectional 1976, 1989, 1995, 1998, 2001) medical surveillance
analyses were conducted of workers (number ranging between 163 and 323 per
year) from a manufacturing facility that used perfluorononanoic acid (PFNA or C9)
blend in the production of high-performance polymers (Mundt et al. 2007). Other
fluorinated hydrocarbons in this blend were the perfluorocarboxylic C11 and C13
congeners. No specific biomonitoring measurements of PPNA were reported. PENA
serum elimination half-life data in humans is unknown but would be expected to be
several years, similar to PFOA.

4.2.3.4 Manufacturers in China

Manufacturing of POSF-based materials increased in China after the announced
phase-out by the 3M Company (Fig. 4.9) (Zhang et al. 2012). The trend in PFOS-
related production declined slightly in 2008 after the European Union directive to
not importt textiles treated with POSF-related materials (Zhang et al. 2012; Xie et al.
2013). PFOS-based production has remained relatively steady since 2009. Three
major PFOS-based applications exist in China: metal plating; fire fighting foams;
and insecticides (sulfuramid).
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Fig. 4.9 Approximate annual production of PFOS (tons) in China, 20022008 according to Xie
etal. (2013)

Twelve companies were identified as manufacturers of POSF-related materials
that are located in Hubei and Fujian provinces (Table 4.2) but worker biomonitoring
data were not presented (Huang et al. 2013). Wang et al. (2012) described an envi-
ronmental assessment at a manufacturing facility near Wuhan, (Hubei Province)
China. PFOS and PFHxS were found in dust, water, soil and chicken eggs.
Concentrations were dependent on distance from the plant. Although dust was a
major exposure, biomonitoring of the workers was also not reported. High serum
concentrations of PFOS were reported among commercial fishermen in Tangxun
Lake (Wuhan, China) that receives waste water treatment plant discharges originat-
ing from an industrial park that included a POSF-related manufacturing plant(s)
(Zhou et al. 2014). See a detailed description of Tangxun Lake in the community
studies section of this chapter. A fluorine chemical industrial zone was identified
near Changshu City, in the Jiangsu province (Wang et al. 2012). A total of 27
fluorochemical plants were located in this industrial zone but Wang et al. did not
identify company names or products manufactured were not identified. At one of
these fluorochemical plants a biomonitoring study was performed on 55 male
workers and 132 nearby residents (Wang et al. 2012). Results showed both occupa-
tional as well as residential exposure to PFOA compared to other general population
levels reported in China (Wang et al. 2012). PFOA values differed between workers
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Table 4.2 POSF- related Hubei Province (n=9)

;g;‘l‘;;“l manufacturers 1. Hubei Hengxin Chemical Co., Ltd
2. Wuhan Chemical Industry Institute Co., Ltd.
3. Changjiang Fluorochemical Co., Ltd
4. Yingcheng Sanwei Chemical Co. Ltd
5. Hubei Xiaochang Xiangshun Chemical Co., Ltd.
6. Wuhan Jinfu Economic Development Co., Ltd
7. Wuhan Jiangrun Fine Chemical Co., Ltd.
8. Hubei Kaie Printing Ink Manufacture Co., Ltd
9. Wuhan Defu Economic Development Co., Ltd

Fujian Province
1. Shaowu Huaxin Chemical Co., Ltd
2. Shaowu Jintang Anshengqi Chemical Co., Ltd

3. Jianyang Tianfu Chemical Co., Ltd

Presentation given by Jun Huang®, Gang Yu® and
Shengfang Mei", at the 5th International Workshop on Per-
and Polyfluorinated Alkyl Substances. Helsingor,
Denmark. October 2013

“School of Environment, Tsinghua University, China
®China Association of Fluorine and Silicone Industry
(CAFSD

and residents: [workers 1,636 ng/mL (range 95-7,737 ng/mL); residents [378 ng/
mbL (range 10-2,427 ng/mL)]. Unlike PFOA, the other PFASs measured, including
PFHpA, PFNA, PFDA, PFDoA, PFBS, PFHxS, and PFOS were not substantively
different between workers and nearby residents.

4.2.3.5 ‘Downstream’ PFAS Production

Specific PFASs applications occur in the carpet, textile, and leather industries, paper
mills, the semiconductor industry, and metal plating. Although environmental
exposure data was reported related to emissions from various industrial settings,
biomonitoring data were not available related to the workers at these ‘downstream’
PFAS user facilities. Although PFAS biomonitoring data were not found in the
scientific literature, it is possible such analyses could have been conducted but never
published. For example, at Dalton, Georgia, known as the “carpet capital of the
world,” Konwick et al. (2008) conducted an environmental assessment of PFASs in
surface water and reported high concentrations at a location in the Conasuga river
near a wastewater land application site. A US EPA assessment of the drinking water
in the area did not find PFOA or PFOS concentrations exceeding the Agency’s pro-
visional guidelines (US EPA 2009).

Similar to the above investigation at Dalton, Georgia, perfluorinated chemical
analyses occurred in a river near the location of major Taiwanese semiconductor
and electronics industries (Lin et al. 2009) as well as near the largest science park in

ED_002974_00000598-00110



4 PFAS Biomonitoring in Higher Exposed Populations 99

Taiwan (Lin et al. 2014). However, there was no indication that PFAS biomonitoring
occurred among employees or residents living near these industries.

4.3 Biomonitoring in Communities Affected
by Environmental Exposures of PFASs

Several communities have been affected by environmental releases of PFASs that
reached surface and/or groundwater sources for drinking water. Depending on loca-
tion, environmental releases were from three major types of sources: (1) industrial
emissions (air, water) from nearby PFAS manufacturing plants; (2) landfill leachate
where PFAS materials had been legally deposited with subsequent finding into
aquifers; and (3) run-off into water ways (creeks, rivers, lakes) from agricultural
fields where treated sewage sludge had been applied as soil conditioner.

Biomonitoring for PFAS in each affected community demonstrated concentra-
tions above levels reported in the referent general population. The largest popula-
tion (approximately 69,000) studied in a series of epidemiologic investigations, to
date, resided in a mid-Ohio River valley community encompassing six water dis-
tricts in either Ohio or West Virginia. In another community, increased serum PFAS
concentrations were associated with fish consumption resulting in the highest serum
PFOS serum concentration ever reported in the literature.

Brief reviews of six affected community studies are provided below.

4.3.1 United States
4.3.1.1 Minnesota (“East Metro” Study of Minneapolis-St. Paul)

The Minnesota Department of Health (MDH) (2008, 2012a), under cooperative
agreement with the U.S. Agency for Toxic Substances and Disease Registry
(ATSDR), issued public health assessments regarding emissions of PFASs from the
3M Cottage Grove manufacturing facility as well as several local landfills where the
plant had legally disposed of wastes in the 1950s, 1960s, and 1970s. Several PFASs
were detected in public and private wells in east metro communities of the
Minneapolis-St. Paul metropolitan area. Exposure was attributed to landfill leachate
with PFOA entering the aquifer. PFASs levels in the drinking water in some of these
wells were above the state’s health risk limits of 0.3 pg/L. for PFOA and/or PFOS
(see Chap. 17). Remediation efforts included installing granular activated charcoal
filration systems in municipal water systems, connecting residential users of
affected private wells to municipal water systems, and placement of whole-house
activated carbon filters in other rural residences. In addition remediation efforts at
the affected landfills occurred to mitigate further leachate mediated PFOA entry
into the groundwater.
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Fig. 410 Geometric mean and 95th percentile serum PFOS and PFOA concentrations in east
metro residents of Minneapolis St-Paul, compared to NHANES

As part of the MDH’s effort to assess citizens’ exposure, a random sample of east
metro citizens was contacted who lived in affected arcas (MDH 2012b, ¢). In 2008
the geometric mean serum concentrations for PFOS (35. 1 ng/mL), PFOA (15.1 ng/
ml), and PFHxS (8.2 ng/mL) were approximately three to four times higher than
the 2007-2008 NHANES data (Fig. 4.10). In a resampling of this population 2 years
later, the geometric mean serum concentrations for the East Metro area were
24.3 ng/mL, 11.3 ng/mL, and 6.4 ng/mL, respectively. This represented 2-year
percentage declines of 26 %, 21 %, and 13 %, respectively. These percentage reduc-
tions approximate what might be the expected serum elimination half-lives that
have been reported for these three PFASs (Olsen et al. 2007). Based on these
percentage declines, the MDH concluded the exposure reduction efforts appeared to
be working but continued biomonitoring was warranted (MDH 2012¢). A third
biomonitoring sampling of this population is being conducted in 2014.
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4.3.1.2 Alabama (in the Vicinity of Decatur, AL and Morgan,
Lawrence, and Limestone Counties)

Between 1996 and 2008, the Decatur, Alabama waste water treatment plant (Decatur
Utilities) processed permitted wastewater effluent from local industries involved in
the manufacture and/or use of PFASs (Lindstrom et al. 2011). It was estimated
34,000 tons of impacted biosolids from the wastewater treatment plant were applied
as treated sludge to approximately 5,000 acres of agricultural fields in Lawrence,
Morgan, and Limestone Counties. In 2007 the U.S. EPA was notified by a PFAS
manufacturer, Daiken Corporation, in Decatur, Alabama that it had unknowingly
discharged large amounts of perfluorocarboxylic acids into the Decatur Ultilities
wastewater treatment plant (Lindstrom et al. 2011; Decatur Daily 2009). The US
EPA conducted a series of investigations sampling biosolids, surface water, ground
water, drinking water, and soils in the area around these agricultural ficlds to deter-
mine PFAS concentrations. PFOA was detected (57 %) in surface waters near these
fields and 4 (22 %) of 19 private wells had PFOA concentrations above the EPA’s
Provisional Guideline of 0.4 pg/L.

As reviewed by the US Agency for Toxic Substances and Disease Registry
(ATSDR 2013), between 2008 and 2011 the US EPA conducted a series of munici-
pal water testing involving five other public water distribution systems in the area
(ATSDR 2013). One of the five municipal public drinking water systems, West
Morgan/East Lawrence (WM/EL), had detectable PFOA and PFOS concentrations
but both were below the EPA’s Provisional Health Advisory levels. The WM/EL
obtained its water from the Tennessee River 13 miles downstream from an industrial
area with PFAS manufacturing and use that was located in the Decatur area. Studies
of PFAS concentrations in the river had been previously reported (Hanson et al.
2002; Weston 2012).

The ATSDR (2013) subsequently conducted a human exposure investigation that
resulted in letters sent to 519 eligible households. A total of 85 households (16 %)
participated (153 people volunteered from these households). A primary objective
was to measure PFASs in these participants’ serum that lived and worked in the
affected WM/EL public water system. Figure 4.11 provides the geometric mean
serum concentrations for PFOS, PFOA, and PFHxS for the three different water
sources reported by the ATSDR (2013): WM/EL public water system; water sources
without detectable PFAS levels; and private drinking wells with detectable PFAS
levels. NHANES general population data are also presented for comparison
purposes. Geometric means serum PFAS concentrations were approximately two to
five times higher in individuals residing within the WM/EL or having an affected
private well than those individuals living in residences without detectable water
levels (Fig. 4.11). The range of serum PFFOS concentrations for these three water
categorizations were (in parentheses): (5.6-248 ng/mL), (38.6-472 ng/mlL.), and
(5.4-201 ng/mL), respectively. The range of serum PFOA concentrations were (in
parentheses): (2.2-78.8 ng/mlL), (7.6-144 ng/ml), and (2.8-50.4 ng/mL),
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Fig. 4.11 Geometric serum PFOS, PFOA, and PFHxXS concentrations in residents of affected
communities through drinking water exposure near Decatur, AL compared to NHANES

respectively. The range of PFHxS concentrations for these three water sources were
(in parentheses): (0.6-32.3 ng/mL), (6.1-59.1 ng/mL), and (1.2-24.8 ng/mL),
respectively. Additional epidemiologic analyses and interpretation is included in
this ATSDR Health Consultation (2013) (See Chap. 14).

4.3.1.3 Mid-Ohio River Valley (West Virginia/Ohio)

As discussed above, APFO (ammonium salt of PFOA) was used as an emulsifier in
the polymerization of TFE to polytetrafluorocthylene (PTFE) at the DuPont
Washington Works plant (near Parkersburg, West Virginia). Cumulative evidence
demonstrated PFOA entered water supplies along this mid-Ohio River Valley area
which led to a certified class action between plaintiffs (the ‘Class’) and DuPont
(Frisbee et al. 2009). The PFOA water exposure was attributed to industrial
emissions of APTO from the nearby DuPont Washington Works plant (Paustenbach
et al. 2007; Shin et al. 2011a, b, 2012, 2014). A pretrial settlement between the
Class and DuPont provided: (1) funds for health and education projects (subsequently
known as the C8 Health Project); (2) provisions by the company to remove PFOA
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from the water supply of six affected water districts; and (3) establishment of an
independent panel of three scientific experts (the C8 Science Panel) to determine the
presence or absence of “probable links” defined as the weight of the available
scientific evidence that it is more likely than not there is a link between exposure to
PFOA and a particular human disease among the Class. To arrive at these conclu-
sions the C8 Science Panel initiated 12 epidemiologic investigations of 535 diseases
and reached 6 probable link conclusions (Steenland et al. 2014). These ‘probable
links’ are reviewed in Chap. 14.

Several papers provide insight into the chronology of some of the exposure
research activities that were conducted in this community.

Emmett et al. (2006) initially described the highest PFOA drinking water con-
centrations were from the Little Hocking Water District (LHWD). The average
PFOA concentration in the LHWD from January 2002 until May 2005 was 3.55 pg/L
(range 1.5-7.2 pg/L). This is approximately tenfold higher than the current US EPA
Provisional Advisory for PFOA (0.4 pg/L). Emmett et al. suggested residential
water, and not air, was the likely pathway of exposure of PFOA among 161
housecholds that participated in their study. Self-reported number of glasses of water
consumed per day was associated with increased serum PFOA concentrations. The
median serum PFOA concentrations for 0, 1-2, 3-4, 5-8, and >8 glasses of tap
water drinks per day were 301 ng/mL, 265 ng/mL, 370 ng/mL, 373 ng/mL, and
486 ng/mlL., respectively (trend p<0.0001). Households that used bottled water had
significantly lower serum PFOA concentrations. Also, residents who used house-
hold carbon water filters had lower serum PFOA levels (318 ng/mL)) than those who
did not (421 ng/mL) (p=0.008).

Published a few years later were the Class findings from the settlement’s large
cross-sectional health survey and exposure study (i.e., the C8 Health Project)
(Frisbee et al. 2009). Under the court settlement, an independent company,
Brookmar, Inc., designed and implemented the C8 Health Project. The Class
eligibility was defined by exposure to contaminated water, a combination of
geographic, and concentration criteria and exposure duration (Frisbee et al. 2009).
The final C8 Health Project enrollment was 69,030 individuals who were individu-
ally compensated for their study participation per terms of the settlement (Frisbee
et al. 2009). Both clinical laboratory tests and measurement of serum PFASs were
included in the study. Serum PFASs included the perfluorocarboxylate homologue
series C5 to C12 (PFPeA, PFHxA, PFHpA, PFOA, PFNA, PIDA, PFUnA, and
PFDoA) and the perfluorosulfonates PFHxS and PFOS. Individual blood samples
were collected over a 13 month time period (August 2005-August 2006).

The overall geometric mean serum PFOA concentration was 32.9 ng/mL
(mean=82.9 ng/mL; SD=240.8) compared to 3.9 ng/mL for NHANES (2003-
2004) (Frisbee et al. 2009). The range of concentrations in each of these water
districts was not reported by Frisbee et al. Figure 4.12 provides the age- and sex-
adjusted mean serum PFOA and PFOS concentrations for the six water districts and
private well users (West Virginia and Ohio) of the C8 Health Project cross-sectional
study. The adjusted mean PFOA concentrations ranged from fourfold higher
(Pomeroy, Mason County) to >50-fold higher (Little Hocking Water Association)
than comparable NHANES data. The age- and sex-adjusted mean for the Little
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Fig. 4.12 Age-, sex- adjusted mean serum PFOS and PFOA concentrations for the C8 health
project by six water districts and comparison with NHANES data

Hocking Water Association was 227.6 ng/mL for PFOA. The next highest adjusted
mean PFOA concentration was for private well users (132.6 ng/mL). The overall
mean serum PFOS concentration in this mid-Ohio river community (19.2 ng/mlL)
and was similar to NHANES data for 2003-2004 (20.7 ng/mL). This is to be
expected as occupational exposure to PFOS was not present at this DuPont plant.

The Little Hocking Water Association residents studied by Emmett et al. had a
40 % higher average serum PFOA than those shown for this group in the C8 Health
Project (in Fig. 4.11). This difference has been attributed to the fact that by 2005~
2006 Little Hocking Water Association households had already reduced their expo-
sure to PFOA because bottled drinking water had been supplied to their residences
as part of the Class settlement (Frisbee et al. 2009). Subsequent to the 2005-2006
C8 Health Project, serum PFOA concentrations declined 26 % in a subset of
residents from the Little Hocking and Lubeck water districts during the first year
after charcoal activated filters were installed resulting in a serum elimination half-
life of 2.3 years (Bartell et al. 2010).

Serum PFOA concentrations were higher among males than females in the C8
Health Project cross-sectional data (Fig. 4.13). The overall geometric mean for
males (39.4 ng/mL) was higher than females (27.9 ng/mL) (means 98.2 vs. 68.8 ng/mL,
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Fig. 4.13 Geometric mean PFOA and PFOS serum concentrations by age and sex, C8 health
project, 2005-2006 (From Frisbee et al. 2009)
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Fig. 4.14 Estimated historical PFOA releases into C8 health project area (Reprinted with permis-
sion from Shin et al. 201 1a. Copyright 2011, American Chemical Society)

respectively). Several pharmacokinetic factors could explain, at least partially, these
sex-related differences as PFOA is bound to serum protein. These factors may
include pregnancy (Kato et al. 2014), parity (Berg et al. 2014; Brantsazter et al.
2013), lactation (Brantsater et al. 2013; Fei et al. 2010; Sundstrém et al. 2011); and
menstroation (Taylor et al. 2014).

Historic air and water emissions data were modeled by Shin et al. (2011a)
(Fig. 4.14). These data, along with absorption, distribution, metabolism, and excre-
tion (ADME) modeling, were used to predict annual serum PFOA exposures
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(1951-2008) for the C8 Health Project participants based on their individual
residential histories and water sources (municipal, well) (Shin et al. 2011b). For the
six water districts” combined populations, the predicted median serum PFOA
concentrations were within 0.5 orders of magnitude of the observed median concen-
trations measured in 2005/2006 during the course of the C8 Health Project. For
example, for the C8 Health Project participants who had the same residence and
workplace in one of the six water districts from 2001 to 2005 and assumed water
consumption had a predicted median serum PFOA concentration in 2005-2006 of
32.2 ng/mL compared to 40.0 ng/mL observed. Predictions were less reliable for
botiled water drinkers (10.5 ng/mL predicted versus 27.5 ng/ml. observed) and
those individuals not having had residences and workplace in one of the water
districts from 2001 to 2005 (5.7 ng/mL predicted versus 15.3 ng/mL observed).

For the purpose of exposure reconstruction of PFOA in the C8 Science Panel’s
series of epidemiologic studies of a combined cohort of community participants and
DuPont workers Winquist et al. (2013) were able to target 40,145 community
members from the 54,457 C8 Health Project participants aged 20 years of age and
older and 3,713 DuPont workers from the original 6,026 DuPont cohort. Of these
3,713 DuPont workers, 1,890 were also in the community cohort resulting in a total
cohort of 30,431 participants that were contacted during the course of their epide-
miologic studies. This combined cohort’s historic annual estimated serum PFOA
concentrations between 1951 and 2011 are presented in Fig. 4.15. Among only the
community cohort, their median and interquartile ranges were 24.2 ng/ml and
12.3-58.9 ng/mL, respectively. Among the DuPont workers in the community
cohort, their respective serum concentrations were 109.8 ng/mL. and 55.9-256.2 ng/
mL. The combined cohort’s trend in serum PFOA concentrations (Fig. 4.15)
mirrored the plant air and water emissions (Fig. 4.14).

Bartell et al. (2010) sampled the blood (up to six samples) of 200 residents of the
Little Hocking and Lubeck water districts over an 18 month time frame. Their initial
sampling serum PFOA concentration was 54.5 ng/ml.. After water filtration was
implemented, these investigators estimated the average serum PFOA decline was
26 % per year resulting in a median serum PFOA half-life of 2.3 years. This esti-
mate was minimally biased from background exposures (Bartell et al. 2012).

4.3.1.4 Paulsboro, New Jersey

PFNA was detected at approximately 150 pg/mL (parts per trillion) in drinking
water from the Paulsboro water departiment municipal well (New Jersey Health
Department 2014). A potential source of exposure may be a nearby Solvay polymer
plant that used to manufacture PFINA until 2009. No serum concentrations of area
residents have been reported, to date.
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Fig. 4.15 Estimated historical serum PFOA concentrations by year for the community worker
cohort study (From Winquist et al. 2013)

4.3.2 Germany

4.3.2.1 Arnsherg, Germany (Mohne Lake, Mohne River, Tributary
of Ruhr River, Sauerland North Rhine-Westphalia Region)

A large environmental sampling study was conducted of surface and drinking water
samples taken from multiple sites of the Rhine river and its main tributaries
(Skutlarek et al. 2006). Sampling activity showed the summed PFAS concentrations
in the water below 0.1 pg/L and that PFOA represented approximately 10 % of this
total of PFAS. One tributary of the Rhine river, the Ruhr river located in northwest
Germany, had at its mouth (near the city of Duisburg), a summed concentration of
0.94 pg/L with PFOA surprisingly representing 50 % of this amount. Investigators
sampled further upstream on the Ruhr river focusing on one of its tributaries, the
Mohne river. In a reservoir on this tributary, Lake Mé6hne, the summed PFAS con-
centrations reached 0.82 pg/L. (PFOA=0.65 pg/L). Upriver from this lake, the
summed PFAS concentrations on the Mohne river reached 4.39 pg/lL at Heidberg
(PFOA=3.64 pg/L). Investigations localized the main source of contamination
between two parallel creeks where at the mouths of these creeks the summed PFAS
concentrations reached 8.3 pg/L and 43.4 pg/L. PFOA represented more than 75 %
of this amount at each mouth. Other perfluoroalkyls measured included PFBS,
PFOS, PFBA, PIFPeA, PFHxA, and PFHpA.
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The investigators determined that between these creeks in a 10 ha-wide area
(near Brilon-Scharfenberg) soil improvers were applied to the fields that had incor-
porated industrial wastes impregnated with high PFAS concentrations by a recy-
cling company. Upon discovery of this affected area, installation of special drainage
and water treatment was applied to reduce exposure to the upper Mohne river as
well as charcoal filters installed in the M6hnebogen water works with frequent mon-
itoring and change-out (Wilhelm et al. 2008).

Concentrations between the PFAS levels in the Mohne river and public drinking
water were comparable for four boroughs of the city of Arnsberg which is situated
near the mouth of the Mohne river. The majority of PFAS concentrations measured
in the drinking water (total PFAS 0.60 pg/L) was due to PFOA (0.52 ug/L).

A biomonitoring study was conducted of a sample of residents from this Arsberg
population (men and mothers/children) with referent populations selected from the
city of Brilon (men from the upper reaches of Mdohne river before contamination
site) and mothers and children in the Siegen area (not located on the Ruhr river or
its tributaries) (Holzer et al. 2008). Baseline blood samples were taken in 2006 and
repeated in 2007 (Holzer et al. 2008) and 2008 (Holzer et al. 2009).

Provided in Fig. 4.16 are the results for the participants in the 2006 and 2008
surveys (Brede et al. 2010). In the baseline year (2006), the geometric mean and
range of PFOA plasma concentrations (in parentheses) were: children (23.4 ng/mL,
95 % CI 19.2-28.5); mothers (23.6 ng/mL, 95 % CI 19.2-29.0); and men (30.3 ng/
mL, 95 % CI 25.3-36.3). The 95th percentiles were 45.7 ng/mL, 53.5 ng/mL, and
49.2 ng/mL., respectively. These geometric mean and 95th percentile concentrations
were approximately fivefold higher than the referent populations. Two years later
after the remediation efforts, the geometric mean PFOA plasma levels declined by
39 % (children and mothers) and 26 % (men) in the Arnsberg population compared
to 13-15 % in the reference groups (Fig. 4.16). The higher percentage declines
among mothers and children were considered likely due to this population undergo-
ing a greater initiative to reduce their drinking tap water consumption upon discov-
ery of this environmental issue. The small decline of PFAS concentrations in the
reference populations likely reflected the similar decreases observed in the general
population. Geometric means of PFFOS and PFHxS plasma concentrations were
similar between the Arnsberg and referent populations.

Based on this 2 year study, Brede et al. calculated an estimated serum elimina-
tion geometric mean half-life of PFOA at 3.3 years assuming only background
exposure. However, due to the fact this background exposure (approximately 4 ng/
mL) approached the Arnsberg exposure data, Bartel (2012) calculated this 3.3 year
half-life estimate was biased upwards by 26 %. Similarly, Russell et al. (2014)
adjusted for background exposure in the Arnsberg database and estimated the PFOA
geometric mean intrinsic half-life of 2.5 years (95 % CI 2.4-2.7) instead of the
apparent half-life calculation of 3.3 years.
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Fig. 4.16 Geometric mean and 95th percentile serum concentrations (ng/mL) of PFOA among
children, women, and men from the City of Arnsberg, Germany and referent populations (Brilon,
Siegen), 2006 and 2008

4.3.3 China
4.3.3.1 Tangxun Lake, Wuhan, China

Tangxun Lake is a relatively shallow body of water 36 km’ area wide located in
Wuhan, China (population ten million). Tangxun Lake water drains to the nearby
Yangtze river. Elevated serum concentrations of PFASs were reported in the surface
water and sediments of Tangxun Lake, its aquatic biota samples, and serum from
commercial fishermen on the lake (Zhou et al. 2013, 2014). Fluorochemical manu-
facturing plants were identified in an industrial park upstream from the wastewater
treatment plant situated on the upper reaches of the lake. As previously mentioned,
Wang et al. (2010) described an environmental assessment at a manufacturing facility
near Wuhan, (Hubei Province) China. The main products produced by ECF were
perfluoroalkyl sulfonic acid, perfluorocarboxylic acids, and perfluorotertiary amines
and their derivatives. Whether this plant is part of this industrial park is uncertain.
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Fig. 4.17 Median serum PFOS and PFOA concentrations (ng/ml.) among fishery employees and
their family members, Tangxun Lake, Wuhan, China

Upstream from this Tangxun Lake wastewater treatment plant were water
samples that had the following concentrations measured: PEFBA 47.8 ug/L; PFOA
2.6 pg/L; PFBS 15.3 pg/L; PFHxS 0.49 pg/L; and PFOS 2.14 pg/L. Effluent from
the wastewater treatment plant had similar mean concentrations of PFOS and PFOA
but mean concentrations of PFBA and PIBS declined to 6 pg/L and 5 pg/L, respec-
tively. Surface lake water concentrations of PFOA and PFOS ranged between 0.1
and 0.3 pg/L. For PFBA and PFBS, the average surface lake water concentrations
were 4.8 pg/L. and 3.7 pg/L, respectively. For perspective, the US EPA Provisional
Advisory for Water for PFOS and PFOA are 0.2 pg/L and 0.4 pg/L (See Chap. 17
for other advisory values from other states and countries.)

Figure 4.17 presents the median PFAS serum concentrations for 37 Tangxun
Lake fishermen, 7 family members, and 9 reference individuals. The median PFOS
concentrations were 10,400 ng/mL, 3,540 ng/mL, and 19 ng/mL, respectively. The
linear/branch PFOS ratio was 3.6:1 which approximates the ratio to be expected
with the ECF manufacture of POSE The highest serum PFOS concentration
measured was 31,400 ng/mL in a commercial fisherman. This concentration is
threefold higher than the next highest value ever reported — a worker engaged in
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POSF production workers at the 3M Decatur plant (Olsen et al. 2003b). PFHxS
concentrations were also considerably higher in the commercial fishermen (median
542 ng/mL) but lower for PFOA (41 ng/mL) (Fig. 4.16). Several species of Tangxun
lake carp, shrimp and snail had PFOS concentrations ranging between 200 and
600 ng/g/ww (Zhou et al. 2013). Exposures to commercial fishermen on Tangxun
Lake were considered likely due to their fish consumption (Zhou et al. 2014). Zhou
et al. concluded the population identified around Tangxun Lake may offer an excel-
lent research opportunity to resolve controversial PFAS findings in the published
epidemiologic studies.

4.4 Other Biomonitoring Data (Medical, Occupational,
and Consumer)

4.4.1 Phase I Clinical Trial of Cancer Patients

APFO has been shown to cause endoplasmic reticulum stress, inhibit PIM kinases,
and exhibit anti-cancer activity in multiple xenograft models (MacPherson et al.
2010, 2011). The tolerability, safety and pharmacokinetics of APFO were reported
in an update of a phase I clinical trial in 41 human patients with advanced (solid)
cancer (MacPherson et al. 2010). Sequential cohorts of three patients were enrolled
in this dose escalation trial that followed a standard 3+3 design until dose-limiting
toxicity was observed in two or more of six patients at a given dose. The protocol-
defined maximum tolerated dose was not reached. The recommended Phase 2 dose
was 1,000 mg weekly based on the common cumulative drug-related toxicity of
fatigue, nausea, vomiting, and diarrhea at weekly 1,200 mg doses. Based on a poster
presentation (McPherson et al. 2010), highest plasma level of PFOA achieved in a
patient approached 1250 pM (approximately 515,000 ng/mL). To date, this would
be the highest PFOA concentration known to have been reported in a human.

4.4.2 Professional Ski Waxers

In a series of papers, Nilsson et al. (2010a, b, 2013) investigated PFAS exposures
among professional ski waxers. Two types of ski wax are used depending on the
race: grip and glide, but only the latter contains fluorinated additives. Glide ski
waxes are applied using a petroleum based product that contains various linear
hydrocarbons with the formula (CH;(CH,),CH; [where n is between 10 and 80
carbon atoms] and semifluoroalkanes with the formula (CH;(CH,).(CF;),CF;
[where m varies from 14 to 20 and n from 2 to 16]. Specific formulas are usually not
disclosed by the manufacturers.
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Nilsson et al. (2010a) conducted a seasonal biomonitoring trend study of eight
professional ski waxers employed by the Swedish and US national cross-country ski
teams. During the professional racing season, these technicians applied fluorinated
ski wax approximately 30 h per week. A total of 57 blood samples were examined
before, during, and after the Interational Federation Ski (FIS) World Cup season in
2007-2008. Nilsson et al. compared the ski wax technicians’ blood levels to unex-
posed men of similar age. Among the professional ski waxers, their median PFOA
whole blood concentration was 112 ng/ml. compared to the unexposed group’s
2.7 ng/mL level. Their PFNA levels (range 10.1-163 ng/mL) were between 15 and
270 times that of the referent group. Other perfluorocarboxylate concentrations
reported higher than expected concentrations included perfluorohexanoate (PFHxA),
perfluoroheptanoate  (PFHpA), perfluorodecanoate (PFDA), and perfluoroun-
decanoate (PFUnDA). The sulfonated PFASs were not above background levels
because these compounds are not incorporated in ski waxes.

Nilsson et al. (2010b) examined inhalation exposure to fluorotelomer alcohols as
application of the ski waxes frequently occurs in small cabins. Air monitoring of
perfluorocarboxylates, perfluorosulfonates, and fluorotelomers (6:2FTOH, 8:2
FTOH, and 10:2 FTOH) were analyzed. The 8:2 FTOH (range 830-250,000 ng/m?)
was the highest measured and ranged 8-32 times higher than PFHx A (57-14,000 ng/
m?) and 10-800 times higher than PFOA (80-4,900 ng/m®). The average concentra-
tion of telomer alcohols 6:2 FTOH, 8.2 FTOH, and 10:2 FTOH were 240 ng/m°,
92,800 ng/m®, and 370 ng/m’ in the air, respectively. Mean levels of PFOA and
PFNA were 1,200 ng/m® and 30 ng/m’ compared to 4,900 ng/m® for PFHxA. Air
monitoring data were not correlated to serum concentrations due to the long serum
elimination half-life of PFOA.

Nilsson et al. (2013) studied whether the PFOA measured in these professional
ski wax technicians came from direct exposure to PFOA in the air or from biotrans-
formation of the 8:2 FTOH. Their data indicated metabolism of FTOHs to PFOA
and PFNA was the likely biotransformation pathway because 5:3 fluorotelomer
carboxylic acid (5:3 FTCA) and 7:3 FTCA metabolites were also measured in the
whole blood of these ski wax technicians (median concentrations 1.7 ng/mlL and
0.92 ng/mL), respectively.

Freberg et al. (2010) examined PFAS blood concentrations and air samples
among 13 professional ski waxers from the Norwegian ski team. They monitored
serum concentrations after one season (March 2008), obtained a second sample just
before the next season (November 2008), and collected final samples obtained after
the second season (March 2009). At the end of the second season, median serum
PFOA (57 ng/mL, range 20-162), perfluorononanoate (PFNA) (6.8 ng/mL., range
2.3-27), and PFDA (0.9 ng/mL, range 0.2-3.3) concentrations were approximately
25-fold, tenfold and tenfold higher, respectively, than the Norwegian general
population. Serum PFOA, PFNA, and PFDA concentrations were correlated with
the number of years exposed to ski waxes. C4-C14 chain lengths were determined
in the air monitoring data; with PFOA (C8), PFDA (C10), and PFDoDA (C12), and
perfluorotetradecanoate (PI'TrDA) (C14) having the highest concentrations.
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4.4.3 Firefighters

Because of their surface-tension properties, aqueous film-forming foams (AFFF)
are chemical mixtures developed to extinguish and prevent re-ignition of hydrocar-
bon fuel-based fires. AFFT's were formulated with proprietary fluorinated surfactants
(D’ Agostino and Mabury 2014). AFFF differed by their multiple manufacturers and
year of production (Houtz et al. 2013). In general, AFFFs contained fluorosurfac-
tants, hydrocarbon surfactants, cosolvents and solvents (Weiner et al. 2013). PFOS
was a commonly used fluorosurfactant in AFFTs (before phase-out) with 6:2 fluoro-
telomer chain length products subsequently becoming a dominant source in AFFFs
with 6:2 fluorotelomermercaptoalkylamido sulfonate (FTAS) and 6:2 fluorotel-
omersulfonamide alkylbetaine (FTAB) as common components. D’ Agostino and
Mabury (2014) recently identified 12 novel and 10 infrequently reported PFAS
classes in AFFFs with fluorinated chain lengths ranging from C3 to C15 that repre-
senited 103 total compounds. Investigations have examined AFFF training locations,
including airport fire fighting training facilities whether they were military or civil-
ian operations. Several of these sites have now been characterized for soil, ground
water and other environmental assessments of PFASs and the reader is directed
elsewhere for such analyses as findings are site-specific (Awad et al. 2011; Place
and Field 2012; Weiss et al. 2012; Weiner et al. 2013).

Studies were not identified that reported biomonitoring data obtained from
individuals who were trained with AFFT formulations that were applied to specific
hydrocarbon fuel-based fires, whether actual or ignited for training based purposes.
In Cologne, Germany ten nearby community residents were sampled via biomoni-
toring whose private drinking wells contained PI'ASs likely from a nearby fire
training area (Weiss et al. 2012). For well “A”, plasma concentrations for five of the
individuals ranged for PFOS from 19.4 to 295 ng/mL., for PFOA from 4.0 to 18.0 ng/
mL, and for PFHxS from 18.9 to 205 ng/mL.. Serum concentrations were somewhat
lower for individuals who belonged to well “B”.

Large scale perfluoroalkyl-related biomonitoring studies of fire fighters have not
been published. A subset of 36 individuals from the mid-Ohio River valley C8
Health Project cross-sectional study conducted in 2005-2006 (see community
exposure) self-identified their single employment category as firefighters (Jin et al.
2011). These individuals’ median PFHxXS concentration was 4.6 ng/ml. compared
to those who reported other employment (3.6 ng/mL) or no job reported (3.5 ng/
mL). Likewise, the median PFOS serum concentrations were 27.9 ng/mL, 23.0 ng/
ml, and 20.9 ng/mL, respectively. Although Jin et al. suggested the PFHXS
difference was likely the result of exposure to fire-suppression foam and/or fire
conditions in households with stain resistant carpet applications, their small sample
size, the absolute difference (1 ng/mL.), and the lack of detailed occupational history
suggests the authors’ inference was rather speculative.
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4.4.4 Fishermen

As reported in several northern European countries, diet, particularly that of fish, is
considered an important source to the PFOS serum concentrations measured in
Scandinavian general populations (Falandysz et al. 2006; Haug et al. 2010; Rylander
et al. 2010), although this association has not been consistently observed in these
countries (Eriksen et al. 2011). A sample of 196 Greenlandic Inuits, whose
traditional diet consists of consumption of fish and marine mammals, had a mean
PFOS concentration of 51.9 ng/mL in 2002-2003 (Lindh et al. 2012). This was
approximately 50 % higher than NHANES data (Kato et al. 2011). Among these
Inuits, higher concentrations were reported for those who lived in more isolated
regions than those residing in Nuuk, the capital of Greenland, where purchased
foods were a greater source of PFASs.

In other parts of Europe, geometric mean serum PFOS and PFOA concentrations
of 478 freshwater fish anglers from six regions in France were comparable to U.S.
and Canadian general population levels (Denys et al. 2014). This finding may be the
result of the relatively low frequency of fresh water fishing in this population.
However, the top 10th percentile of these anglers fished at least ten times during the
year. At the 95th percentile of these fresh water anglers, their geometric mean
concentration was 56.7 ng/mL for PFOS compared to 40.4 ng/mL in NHANES
suggesting fresh water fish consumption contributes to PFOS concentrations among
those who fish often.

It should therefore not be unexpected that fishermen may have higher serum
concentrations of PFASs when consuming fish from lakes affected with higher
PFAS concentrations as a consequence of industrial PFAS releases (e.g., Tangxun
Lake, Wuhan, China) or from agricultural run-off into rivers where soil conditioner
containing perfluoroalkyl compounds had been applied to the land (Lake Mohne,
Germany). Commercial fishermen on Tangxun Lake, as well as their family
members, had serum PFOS concentrations in the higher ranges of occupational
manufacturing workers (Fig. 4.17). The highest serum PTOS concentration
(31,400 ng/mL) reported, to date, in the scientific literature, was measured in one of
these Tangxun Lake commercial fishermen (Zhou et al. 2014). At Lake Mdohne
(discussed above) near Arnsberg, Germany, Holzer et al. (2011) reported two to
threefold higher serum PFOS concentrations among individuals consuming at least
three fish per month than those who did not consume fish (Fig. 4.18).

4.4.5 Post-market Consumers

Because diet was considered to represent a much larger source contribution, Trudel
et al. (2008) estimated exposure to consumer products would result in minor expo-
sures to PFOS and PFOA. TFor example, consumer-related exposures may occur
through treated carpets and coated food contact material but exposures could change
over time based on different formulations (Liu et al. 2014).
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Fig. 4.18 Geometric mean PFOS and PFOA plasma concentrations (95 % confidence intervals)
by fish consumption in 105 Anglers, Lake Mohne, Germany

Although human exposure to treated products is considered low, subgroups of
the general population could obtain higher exposures (Herzke et al. 2012). In this
regard, Beeson et al. (2012) reported unusually high serum perfluorohexanesulfo-
nate (PFHxS) concentrations (range 27.5-423 ng/mL) in a family whose carpets
had been commercially cleaned eight times over 15 years. As a reference, PFHxS
concentrations in the Canadian general population ranged between 1 and 3 ng/
mL. Measurement of vacuum dust in the home found high concentrations of PFHxS
(2,780 ng/g) and PFOS (1,090 ng/g). In this particular family’s case, their Edmonton
residence had an in-floor radiant heating system. Wall-to-wall carpeting had been
installed on top of these heated floors. Beeson et al. believed the high PFHxS to
PFOS ratio reflected two historical 3M Scotchgard™ products that might have been
commercially applied to provide such an exposure ratio. For reasons yet understood,
the shorter chain PFHxS has been reported to have a longer serum elimination half-
life in humans (approximately 7-8 years) than the longer chain PFOS (approximately
4 years) (Olsen et al. 2007) or the shorter chain PI'BS (approximate half-life of
30 days) (Olsen et al. 2009). This is unlike the C4 (PFBA), C6 (PFHxA), and C8
(PFOA) perfluorocarboxylates whose human serum half-lives have been approxi-
mately 3 days (Chang et al. 2008), 32 days (Russell et al. 2013), and 2.3-3.5 years
(Bartell 2012; Olsen et al. 2007), respectively.
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Although general population serum concentrations of PIFHxS in the United States
and Canada generally range between 1 and 3 ng/mL, Olsen et al. (2004a) observed
PFHxXS concentrations were slightly higher among subsets of 598 children and
hypothesized it may be due to their activity exposure patterns (e.g., related to playing
more on carpets) (Olsen et al. 2004a). They reported 95 % of the adult (Olsen et al.
2003d) and elderly (Olsen et al. 2004b) populations had serum PFHxS concentrations
less than 10 ng/mL but this percentage was 73 % in children. Furthermore, only 1 of
645 adults and 1 of 238 elderly individuals had measured serum PFHxXS concentra-
tions greater than 30 ng/mL compared to 11 % (N=67) of the 598 children samples.
Similar distributions were observed for N-methyl perfluorooctanesulfonamidoacetate,
found in PFOS-based products used primarily in surface treatment applications (e.g.,
carpets, upholstery, textiles), and therefore considered a possible marker for con-
sumer-related exposure. Subsequent NHANES data reported by Kato et al. (2009)
supported such a hypothesis in pooled analyses of children’s serum. In addition, other
sampling exposure regimens continued to show household dust as a source for PFASs,
including PFHxXS and fluorotelomer alcohols (Strynar and Lindstrom 2008; Haug
et al. 2011) It should also be noted that N-methyl perfluorooctanesulfonamidoacetate
(N-MeFOSA-AcOH) has declined in NHANES data between 1999 and 2000 when
the geometric mean serum concentration was 0.97 ng/mL (95 % CI 0.84-1.11) and
2007-2008 (geometric mean 0.35 ng/mL, 95 % CI 0.32-0.38).

4.5 Summary

Provided in Fig. 4.19 (PFOS), Fig. 4.20 (PFOA), and Fig. 4.21 (PFHxS) are
comparative analyses of the magnitude of concentrations measured across the three
types of higher exposed populations that were reviewed in this chapter: (1) PFAS
manufacturing and ‘downstream’ production workers; (2) communities affected by
specific identifiable sources of PFAS exposure (above background levels) that have
affected municipal and/or private water sources; and (3) medically-, occupationally-
and consumer-related.

Until recently, the highest serum PFOS, PFOA, and PFHXS concentrations
measured involved PFAS manufacturing workers. While this remains true for aver-
age concentrations, this is not the situation on an individual basis. A commercial
fisherman in Tangxun Lake (Wuhan, China) has the highest concentration reported,
to date, for PFOS (31,400 ng/mL). This is approximately threefold greater than the
highest PFOS measured in a manufacturing worker and 2,500 times larger than the
average in the general population. As for PFOA, again from a population stand-
point, the highest exposed populations with PFOA concentrations are in the occupa-
tional setting (3M, DuPont, and Miteni). However, the highest serum PFOA
concentration ever reported was from a cancer patient enrolled in a phase I clinical
trial of APFO. This patient’s serum PFOA concentration exceeded 515,000 ng/
mL. This is fivefold greater than the highest PFOA concentration measured in a
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Fig. 4.19 Geometric mean (or median) serum PFOS concentrations in higher exposed popula-
tions. See text for descriptions of studies

manufacturing worker and 100,000 times higher than the average person in the
general population.

Although affected communities are sometimes referred to as ‘highly exposed’,
such terminology is always relevant to a baseline. Although individuals in these
communities’ populations may have concentrations comparable to manufacturing
workers, as shown in Figs. 4.19, 4.20, and 4.21, the higher average exposed popula-
tions remain those in PFAS manufacturing and application jobs. The higher exposed
former manufacturing populations have PFOS, PFOA, and PFHxS average serum
concentrations 23 orders higher than the NHANES general population (Figs. 4.19,
4.20, and 4.21). Events unfolding with the very high PFOS concentrations being
measured among commercial fishermen in Tangxun Lake, Wuhan, China may pro-
vide further opportunities for understanding PFAS concentrations in higher exposed
populations (Zhou et al. 2014).

There are several areas of investigation among higher exposed populations that
may be of interest to PFAS biomonitoring researchers. First, have the PFAS concen-
trations declined among the former manufacturing industrial workers? Have their
PFAS blood concentrations declined at a rate to be expected? Unlike several bio-
monitoring trend studies of the general population where PIFOS concentrations have
declined by approximately two-thirds since 2000, such trends have not been reported
among manufacturing workers. Second, have affected communities who had PFAS
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Fig. 4.21 Geometric mean (or median) serum PFHxS concentrations in higher exposed popula-
tions. See text for descriptions of studies

mitigation activities applied to their water supplies, continued to experience
declining PFAS concentrations? Third, research should be directed at measuring
and reporting PFAS concentrations in workers in the burgeoning Chinese perfluoro-
chemical industry. Although concentrations in the Chinese general population
appear to have increased (Jin et al. 2007), there is a virtual absence of reporting of
biomonitoring data in these manufacturing workers. Fourth, although the study
population was small, epidemiologic analyses of the clinical chemistry data of the
patients in the Phase 1 clinical trial of APFO could answer critically important
epidemiologic questions. These answers may provide substantial insight into the
various epidemiologic associations reported about PFOA that have been inconsis-
tently reported at much lower concentrations, often reported at general population
levels (see Chap. 14). Finally, this chapter primarily focused on PFOS and
PFOA. The replacement chemistry for the higher chain PFASs are shorter chain
perfluorosulfonate and perfluorocarboxylate compounds that have considerably
faster serum elimination rates in humans. Whereas there have been some biomoni-
toring data reported on the short-chain PFASs in the general population (Kato et al.
2011; Olsen et al. 2012a), understanding higher exposed populations to these shorter
chain compounds in the occupational setting will provide additional perspectives.
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Chapter 5
Perfluorinated Alkyl Acids in Wildlife

Jessica .. Reiner and Benjamin J. Place

Abstract The first measurements of perfluorinated atkyl acids (PFAAs) in wildlife
from the aqueous and terrestrial environment showed their ubiquitous presence. Since
the initial studies in 2001 their presence, distribution, and fate in the environment has
broadly been studied. PFOS, perflnorooctane sulfonate, is the dominant and most fre-
quently detected PFAA in wildlife from around the world. Additionally long-chain
(greater than eight carbons long) perfluoroalkyl carboxylates (PFCAs) have also been
measured in biota, with some of the highest concentrations being measured in wildlife
from the Arctic. The majority of temporal studies have shown PFOS concentrations
increasing over time; however, more recent observations have started showing a
decline in PFOS in some wildlife. Long-chain PFCA (greater than eight carbons)
concentrations have shown an increase in recent temporal studies, with PFCA concen-
trations comparable to those of PFOS measured in the same animals. Many food-web
studies have examined bioaccumulation and biomagnification of PFAAs. Most studies
have shown biomagnification of PFAAs, with PFOS especially having a higher bio-
magnification potential compared to the PFCAs. While much work has been done
during the 15 years PFAAs have been examined in wildlife, there are still gaps. There
has been limited work on wildlife from terrestrial ecosystems. There are also many
geographical locations that have very limited studies or lack them altogether. Additional
monitoring of the terrestrial environment and the inclusion of new geographical loca-
tions are needed to help understand the global distribution of PFAAs in wildlife.
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5.1 Introduction

The first reports of the global distribution of a perfluorinated compound (PFC) in
wildlife, mainly perfluorooctane sulfonate (PTFOS), were in 2001 (Giesy and Kannan
2001; Kannan et al. 2001a, b). These studies included a wide variety of organisms
spanning many trophic levels and from many different regions (North America,
Europe, Arctic, etc.) and concluded that PFOS was a widespread, persistent pollut-
ant. The initial studies on PFAAs focused on PFOS and perfluorcoctanoic acid
(PFOA), but expanded quickly to include perfluorinated sulfonic acids (PFSAs),
perfluorinated carboxylic acids (PFCAs), and PFAA precursors (fluorotelomer alco-
hols, sulfonamide ethanols, perfluorsuifonamides, and fluorotelomer saturated and
unsaturated carboxylic acids). While the list of PFAAs has increased significantly,
PFOS is still the dominant compound analyzed for and found in wildlife.

The majority of imtial studies focus on measurement of PFAAs in wildlife com-
ing from North America and Europe, two of the major manufacturing locations until
2002 (Prevedouros et al. 2006). As the years have progressed other regions around
the world have started providing measurements in their wild populations. Currently
there are numerous studies from the Northern Hemisphere, especially from wildlife
in North America, Burope, and Asia. Although few, there have been studics looking
at PFAAs in wildlife from the Southern Hemisphere.

This chapter summarizes monitoring data for PFAAs in wildlife throughout the
world. There is a brief discussion of the challenges associated with wildlife sam-
pling, laboratory measurement, and apalytical issues. After describing the current
knowledge of PEAAs in wildlife, we will go into more detail about distribution, sex
and age trends, temporal trends, and food-web information. Finally we will sum-
marize and discuss some data gaps which should be addressed in future studies.

5.2 Challenges

Most wildlife samples are collected opportunistically and chemical analysis of an
emerging compound class like PFA As have been done on archived samples initially
collected for another purpose. Since the majority of samples were initially collected
for other purposes, the contamination during sampling, storage, and processing
before chemical analysis should be carefully considered. Most studies do not
describe the sampling methods used during the acquisition phase of the experiment;
furthermore measurements of PFAAs from field blanks are rarely described, possi-
bly not even considered during sample analysis.

There are many studies examining PFAAs in all different types of wildlife (inver-
tebrates, reptiles, fish, birds, mammals). A major issue with locking at all wildlife is
making comparisons in different tissue samples. The majority of tissue samples that
have be investigated for PFAAs has included the protein rich matrices such as liver,
blood, serum, plasma, kidneys, eggs, and whole animals. However, in order to
understand the body burden in an animal species, some studies which examine
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PFAAs in other, less protein rich tissues like blubber are needed. The majority of
studies have focused on liver, blood, serum, and plasma because of the predisposi-
tion for PFA As to accumulate in these matrices. When discussing PFA As in wildlife
in this chapter we will mainly focus on these matrices.

Since PFAAs differ from the traditional lipophilic persistent organic pollutants
(POPs), the analytical methods for the analysis of PFAAs in a variety of matrices
remain a topic of active investigation. Hansen et al. (2001) developed one of the first
methods which extracted PFOA and PFOS from tissues using the ion-pairing
method. Other methods using basic methanol for alkaline digestion and acetonitrile
for protein precipitation have been used extensively for measurements of PFAAs
from biological matrices (Taniyasu et al. 2005; Reiner et al. 2011b, 2012; Sinclair
et al. 2006). Having methods adapt to produce better limits of detection and better
recovery is beneficial to the analytical community; however, there are issues with
comparability among studies using different analysis techniques. There have been
pumerous interlaboratory studies looking at the reproducibility of measurements in
a variety of matrices (van Leenwen et al. 2006; Longnecker et al. 2008; Lindstrom
et al. 2009; Keller et al. 2010; Reiner et al. 2012). In general chemical analysis has
improved throughout the years, but historically laboratories have used in-house con-
trol materials to make measurements that have limited interlaboratory comparabil-
ity. With the amount of wildlife studies from many different laboratories and the
different extraction and cleanup methods being used in different laboratories, refer-
ence materials are ideal to help understand the quality and comparability of that data
originating from all of these laboratories. Only recently have reference materials
been available for the measurement of PFAAs in biological matrices (Keller et al.
2010; Reiner et al. 2011b, 2012) and are now being incorporated into biological
measurements on a routine basis (Reiner et al. 2011a).

5.3 Zooplankton and Invertebrates

There have been few studies looking at the accummulation of PFAAs in zooplankion
and invertebrates (Tomy et al. 2004; Powley et al. 2008; Haukas et al. 2007; Houde
et al. 2008; Gulkowska et al. 2006; Haug et al. 2010; van Leeuwen et al. 2009;
Yeung et al. 2009). These studies bave focused in the Arclic, North America,
Europe, and Asia. PFOS has been the most frequently detected PFAA in zooplank-
ton and invertebrate studies; however, most studies showed concentrations of PFOS
and other PEAAs very close to the limats of detection.

54 Amphibians and Reptiles

Although infrequently studied, there are a namber of reports that have examined the
presence of PFAAs in amphibians and reptiles across the planet, focused primarily
on frogs and turtles. Most studies have included amphibians and reptiles as part of
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a larger set of animal classes, in order to evaluate the distribution of PFAA
contamination across species in regions of Canada (de Solla et al. 2012), the United
States (Giesy and Kannan 2001; Kannan et al. 2005a), and China (Shi et al. 2012a;
Wang et al. 2011). Notably, there have been a few studies that have focused solely
on the PFAA contamination of turtles on the Italian coast (Guerranti et al. 2013) and
the southeast coast of the United States (Keller et al. 2005; O’ Connell et al. 2010).

As with the other animal classes, PFOS was the dominant PFAA detected in
most tissues (Kannan et al. 2005a), with some of the long-chain PFCAs and PFSAs
regularly detected (de Solla et al. 2012; Keller et al. 2005; O’ Connell et al. 2010;
Shi et al. 2012a). In a study of freshwater biota nearby an international airport in
Canada, de Solla et al. (2012), reported very high concentrations of PFOS in snap-
ping turtle plasma (mean PFOS concentration: approximately 2,380 ng/g). PFOA
and PFOSA were not regualarly detected in many reptile and amphibian tissues
(Guerranti et al. 2013; O’Connell et al. 2010; Kannan et al. 2005a). In contrast,
Keller et al. (2005) did find detectable quantities of PFOA in loggerhead and Kemp’s
ridley sea turtle plasma (range 0.493-8.14 ng/mL).

PFAA exposure to reptiles and amphibians was regularly identified as coming
from areas of high human population; O’Connell et al. (2010) found a statistically
significant positive correlation between human populations near sampling sites and
the PFOS and PFUnA concentrations in juvenile loggerhead turtles. While few
studies have included amphibian and reptile tissues as part of the samiple collection,
the studies that have been done shown similar PFPAA contamination to other classes
of animals and give us a broader view of overall PFAA contamination in wildlife.

55 Fish

Unlike most wildlife, fish occupy solely aquatic environments of both marine and
freshwater nature. PFAA contamination in fish can indicate point sources of PFAA
pollution through water discharge or can be due to dietary intake of biota in lower
trophic levels. Early studies concentrated specifically on PFOS and PFOA, but sub-
sequent studies have included additional short- and long-chain PFCAs and PFSAs,
as well as PFAA precursors. Fish studies have occurred around the globe, with most
studies focusing on the fish collecied in the Arctic, North America, Europe, and
eastern Asia.

5.5.1 Regional Observations

Arctic regions of fish studies include Iceland and the North Sea (Ahrens and
Ebinghaus 2010), Swedish waters (Berger et al. 2009), the Barents Sea (Haukas
et al. 2007), and the Canadian Arctic (Kelly et al. 2009; Martin et al. 2004a; Powley
et al. 2008; Tomy et al. 2004, 2009). In North America, PFAAs have been measured
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in fish from freshwater lakes and rivers (de Solla et al. 2012; Delinsky et al. 2010;
Moody et al. 2001; Sinclair et al. 2006; Ye et al. 2008a, b) and coastal seawater
(Senthil Kumar et al. 2009; Houde et al. 2006b). Similar to other classes of animals,
important areas of North America that have been studied are the Great Lakes region
(Giesy and Kannan 2001; Kannan et al. 2005a). Fewer studies have been performed
regarding PFAAs in fish from South American waters (Quinete et al. 2009).

The Mediterranean coast of Burope provides a source of marine fish, such as
swordfish (Corsolini et al. 2008; Kannan et al. 2002b) and bluefin tuna (Giesy and
Kannan 2001; Kannan et al. 2002b), which can be measured for PFA As. In addition,
saltwater and freshwater fish throughout central and northern (non-Arctic) Europe
have been studied for PFAA contamination (Falandysz et al. 2007; Ferndndez-
Sanjuan et al. 2010; Hoff et al. 2003; Holzer et al. 201 1; Kwadijk et al. 2010; Riidel
et al. 2011; Schuetze et al. 2010).

Fish derived from the waters of eastern Asia have been frequently studied for
PFAA contamination, including the waters of China (Gulkowska et al. 2006; Loi
et al. 2011; Peng et al. 2010; Shi et al. 2010, 2012b; Zhao et al. 2011), Japan
(Murakami et al. 2011; Nakata et al. 2006; Senthilkamar et al. 2007), and Korea
(WNaile et al. 2013; Yoo et al. 2009). In addition, more widespread studies across
Asia include the measurement of PFAAs in skipjack tuna from the mid-North
Pacific and Indian Oceans by Hart et al. (2008b) and over many countries of Asia by
Murakami et al. (2011).

5.5.2 Relevant PFAAs Identified

PFOS is the PFAA most frequently analyzed and detected in fish tissues, a charac-
teristic in common with many other classes of wildlife. Even in studies where other
PFAAs were detected in fish, PFOS remained the most dominant compound by
concentration (Moody et al. 2001; Martin et al. 2004a; Haukas et al. 2007; Riidel
et al. 2011; Senthil Kumar et al. 2009; Shi et al. 2012b; Taniyasu et al. 2003).
Concentrations of PFOS in various fish tissues ranged from below detection limits
to 72,900 ng/g wet weight. The highest concentrations were reported by Moody
et al. (2001) in livers from common shiner collected from freshwater bodies adja-
cent to a Canadian international airport, which was the site of an accidental release
of PFC-containing firefighting foams in June 2000. Additional frequently-detected
PFAAs in fish include long-chain PFCAs (Loi et al. 2011; Kwadijk et al. 2010;
Houde et al. 2006¢; Falandysz et al. 2007), perfluorohexane sulfonate (PFHxS)
(Falandysz et al. 2007; Kwadijk et al. 2010, Taniyasu et al. 2003), and perfluorooc-
tane sulfonamide (PFOSA) (Martin et al. 2004a, b). Although PFOS has been
frequently detected, studies by Tomy et al. (2009), Martin et al. (2004a), and
Delinsky et al. (2010) did not detect PFOS as the dominant PFAA in the analyzed
fish tissues. In a study of fish around the Ariake Sea in Japan, Nakata et al. (2006)
detected higher levels of PFOA than PFOS in fish located in tidal flats, but the levels
of PFOS were higher than PFOA in fish sampled from the shallow waters.
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More uncommon PFAAs have also been detected in fish tissues, including PFAA
precursors, some sulfonamide ethanols {Ahrens and Ebinghaus 2010) and some
perfluorosulfonamides (Loi et al. 2011; Peng et al. 2010; Tomy et al. 2004; Yoo
et al. 2009). The PIFCAs with a carbon length between six and nine were also
detected in the fish tissue of some studies (Senthil Kumar et al. 2009; Tomy et al.
2009; Nakata et al. 2006). A few studies have successfully separated and measured
the linear and branched isomers of PFAAs in fish. Powley et al. (2008) detected both
linear and branched PFOS in Arctic cod with 50 % of the total PFOS being branched
isomers. In contrast, Kwadijk et al. (2010) did not detect branched PFOS or PFOA
isomers in eel samples although the branched isomers were detected in correspond-
ing water samples.

5.5.3 Routes of Exposure

A notable difference found within, and between, many studies of PFAAs in fish is
the finding that freshwater fish often have higher concentrations of PFAAs in their
analyzed tissues compared to fish from marine ecosystems (Berger et al. 2009; Zhao
et al. 2011). This observation could be due to the more frequent presence of PFAA
contamination sources located on freshwater bodies. As with other classes of wild-
life, higher concentrations and more frequent detections of PFAAs are ofien detected
near more industrialized areas, such as Charleston Harbor in the United States
(Houde et al. 2006b), the confluence of the Yamuna and Ganges Rivers (Yeung et al.
2009), and along the Mississippi River in Minnesota (Delinsky et al. 2010). Hart
et al. (2008b) found significant correlations between PFAAS in open ocean water
and skipjack tuna livers. Outside of the aforementioned airport release of PFAAs
(Moody et al. 2001), the highest detected concentrations of PFOS include fish sam-
pled from the Belgian North Sea (Hoff et al. 2003), Japanese coast (Taniyasu et al.
2003), and United States freshwater rivers (Delinsky et al. 2010; Ye et al. 2008a),
with maximum concentrations reported as 7,760 ng/g wet weight, 7,900 ng/g wet
weight, and 2,000 ng/g wet weight, respectively.

Differences in dietary intake have also been indicated as a possible route for
PFAA exposure. More specifically, statistically significant differences of PFAA con-
centrations in fish tissues were observed between piscivorous and non-piscivorous
fish (Holzer et al. 2011; Ye et al. 2008b; Zhao ct al. 2011). Sinclair et al. (2006)
studied both largemouth and smalimouth bass, but detected no significant difference
in PFOS concentrations, which was expected due to similarities in dietary habits.

5.6 Bird

PFAA studies of birds benefit from having species in nearly every region of the
planet, including both aquatic and terrestrial ecosystems, representing a broad range
of PFAA sources (both from point-source contamination and long-range transport).
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The majority of studies focus on birds coming from the Arctic, North America, and
Europe, while there are limited studies from the Southern Hemisphere (Antarctica
and the Southern Ocean). Initial studies focused on PFOS and PFOA, but the num-
ber of PFAAs examined quickly expanded to precursor compounds, PFCAs, and
PFSAs.

5.6.1 Regional Observations

As with other classes of wildlife, the dominant location of most bird studies is in the
Arctic region including Norway (Verreault et al. 2005, 2007; Herzke et al. 2009;
Miljeteig et al. 2009; Lofstrand et al. 2008; Knudsen et al. 2007), Sweden (Lofstrand
et al. 2008; Holmstrdm et al. 2010), Canada (Butt et al. 2007a; Martin et al. 2004a;
Tomy et al. 2004; Kelly et al. 2009; Holmstrom and Berger 2008), Russia (Miljeteig
et al. 2009), Greenland (Bossi et al. 2005b), and the Farcoe Islands (Bossi et al.
2005b; Lofstrand et al. 2008).

Another region of frequent bird studies is Asia, including studies from China
(Wang et al. 2008a, b; Zhang et al. 2010), Japan (Taniyasu et al. 2003; Nakata ct al.
2006; Kannan et al. 2002a; Senthilkumar et al. 2007), and South Korea (Kannan
et al. 2002a); with studies on both aquatic and terrestrial species of birds. Studies
regarding PFAAs in birds provide a unique insight on not only PFAA occurrence in
wildlife, but also human exposure through the consumption of birds and eggs. A
few studies have focused on bird and egg samples acquired from Chinese farms
(Wang et al. 2010) or directly from Chinese food markets (Wang et al. 2008a; Zhang
et al. 2010), which represent a direct source of PFA A-contaminaied food.

Multiple studies have reported concentrations PFAAs in birds around the
Laurentian Great Lakes regions (Sinclair et al. 2006; Kannan et al. 2001a, 2005a;
Gebbink et al. 2009). Kannan et al. (2001a) studied a wide range of region around
the United States, collecting piscivorous (fish eating) birds from across the confi-
nental United States and the Midway Atoll (Hawaii). Non-Arctic European studies
included birds and eggs from Belgian (Meyer et al. 2009; Dauwe et al. 2007) and
German locations (Rubarth et al. 2011; Riidel et al. 2011). Giesy and Kannan (2001)
reported the results of a study focused on a global evaluation of PFOS in various
species of birds (as well as reptiles, fish, and mammals). It is important to note that
birds in the Antarctic and Southern Oceans have been studied; however less fre-
quently (Schiavone et al. 2009; Tao et al. 2006).

5.6.2 Relevant PFAAs Identified

The PFAAs measured in most of the bird studies are similar to those measured in
other classes of wildlife. The most frequently studied, and detected, PFAA in birds,
across tissues, species, and regions of study, was PFOS. The concentrations of
PFOS in bird assues typically ranged from below the detection limit to 1,000 ng/g,
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although multiple studies reported concentrations 1,000--11,000 ng/g in specific
bird samples (Davwe et al. 2007; Giesy and Kannan 2001; Kannan et al. 20014,
2005a; Meyer et al. 2009; Riidel et al. 2011; Taniyasu ct al. 2003; Holmstrom et al.
2004). The other more common PFAAs include PFOA, PFOS A, perfluorobutane
sulfonate (PFBS), PFHxXS and the long-chain PFCAs. Of the frequently studied
PFAAs, PFOS and the long-chain PFCAs are the most frequently detected in birds.

Less frequently studied in birds are the PFAA precursors, including the fluorotel-
omer (both saturated and unsaturated) acids (Butt et al. 2007a; Loi et al. 2011;
Verreault et al. 2007; Miljeteig et al. 2009), perfluorodecane sulfonate (PFDS)
(Zhang etal. 2010; Loi et al. 2011; Verreault et al. 2007; Kelly et al. 2009; Holmstrom
and Berger 2008), and perfluorosulfonamides (Loi et al. 2011; Lofsirand et al. 2008;
Tomy et al. 2004). For many of the less frequently studied compounds, the percent-
age of quantifiable detections was low. In the studies measuring PFDS in birds, a
majority of the studies found quantifiable concentrations of PFDS.

5.6.3 Routes of Exposure

From the analysis of datasets containing a number of samples within and outside of
specific classifications of birds (e.g., diet, age, gender, and region), patterns can be
observed that may elucidate the routes of PFAA exposure for birds. For instance,
Wang et al. (2010) and Kannan et al. (2002b) found higher concentrations of PFAAs
in birds from regions closer to industrial and urban communmities. In addition to
vicinity, Wang et al. (2010) identified that farm-raised chickens had lower concen-
trations of PFA As than free-range chickens even though the farm was near a PFAA
manufacturing plant. The authors suggested that the difference in PFAA contamina-
tion may be due to a more controlled diet for the farm-raised chickens, rather than
the scavenging diet of free-range chickens. In a study by Sinclair et al. (2006),
concentrations of PFOS was 2.5 times greater in piscivorous birds than in non-
piscivorous birds, indicating that fish consumption poses a significant route of
PFOS exposure in some birds. In the same study (Sinclair et al. 2006), the PFOS
concentrations in adult mallard livers was significantly greater than those in juvenile
mallards, which reflects the bioaccumulative nature of PFOS.

5.7 Mammals

For almost 15 years several studies looking at PFAAs in mammals from around the
world have been conducted. Mammals, similar to birds, span many geographic
arcas and environments, aquatic, semiaquatic, and terresirial. Initally, studies were
focused on mammal samples located in the Arctic, Asia, Europe, and North
America; however, more recent assessinenis have expanded measurements of
PFAAs to mammals from Antarctica and South America. Similar to previous studies
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in other wildlife, original studies started only looking at PFOS and PFOA, but have
since expanded to include a suite of precursor compounds, PFCAs, and PFS As.

5.7.1 Regional Observations

Similar to bird studies, mamials from the Arctic region have been the subject of the
majority of mammal studies. Many whale species, including beluga whale, narwhal,
minke whale, pilot whales, and harbor porpoises, from the United States (Reiner
et al. 2011a), Canada (Tomy et al. 2004), Greenland (Bossi et al. 2005a), and Iceland
(Van de Vijver et al. 2003) have been examined for PFAAs. Pinnipeds (walrus, seal,
and sea lions) from the United States (Giesy and Kannan 2001; Hart et al. 2009),
Canada (Tomy et al. 2004; Martin et al. 2004a; Butt et al. 2007b, 2008), Greenland
(Bossi et al. 2005a), Norway (Kannan et al. 2001b), and Russia (Ishibashi et al.
2008) have also been examined for PFAAs. Blood and liver samples from the apex
Arctic predator, the polar bear, have been examined for PFAAs (Giesy and Kannan
2001; Kannan et al. 2001b, 2005a; Bossi et al. 2005b; Martin ¢t al. 2004a; Dietz
et al. 2008; Smithwick et al. 2005, 2006; Riget et al. 2013). Polar bears from Canada,
Greenland, and the United States have all been shown to have high concentrations
of PFOS in their liver tissues (Bentzen et al. 2008; Braune et al. 2005; Butt et al.
2010). In addition to the aquatic and semni aquatic mammals, the terrestrial Arctic
fox has been measured for PFOS and PPCAs (Martin et al. 2004a). Ostertag et al.
(2009) looked at PFAAs in the livers of caribou from Canada to help understand
potential dietary exposures to PFAAs. Additionally Muller et al. (2011) has exam-
ined PFA As in caribou livers in a terrestrial food web study. In this same terrestrial
food-web study Muller et al. (2011) looked at the concentrations of PFAAS in the
liver of wolves. The mammal studies from the Arctic give a unique perspective
about human exposure because some arctic mammals used in these existing studies
were collected as part of Native subsidence hunts (Reiner et al. 2011a; Ostertag
et al. 2009).

Studies of PFAAs in tissues and blood from whale and pinniped species from
North America, Europe, and Asia have dominated the literature (Shaw et al. 2009;
Kannan et al. 2006; Law et al. 2008; Ahrens et al. 2009a). Mink liver samples from
the United States and Canada have been examined for PFOS (Kannan et al. 2002c¢,
2005a; Persson et al. 2013; Giesy and Kannan 2001; Martin et al. 2004a). In
Poland measuarements of PFOS and long-chain PFCAs have been determined in
the livers of beavers (Falandysz et al. 2007). Two studies have been conducted
examining the concentrations of PFAAs in river otter from the United States
(Kannan et al. 2001b, 2002¢). In Belgium, liver samples from wood mice have
detected relatively high concentrations of PFOS (Hoff et al. 2004). Blood samples
from wild rats and mice from Japan were examined for PFAAs (Taniyasu et al.
2013). Far less frequently have been studies of PFAAs in mammals from Souath
America and the Antarctic (Tao et al. 2006; Dorneles et al. 2008; Quinete et al.
2009; Schiavone ct al. 2009).
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5.7.2 Relevant PFAAs Identified

By far the dominant PFAA identified in mammals is PFOS; however there has been
a noticeable increase in the detection and reporting of long-chain PFCAs, particu-
larly the odd chain PFCAs perfluorononanoic acid (PFNA) and perfluoroundeca-
noic acid (PFUnA), in mammals. The conceniration of PFOS in liver tissues range
from below the limit of detection to greater than 2,000 ng/g wet mass (Houde et al.
2006hb, 2011). PFHxS has been routinely identified in liver samples from mammals
(Dietz et al. 2008; Galatius et al. 2013; Hart et al. 2009; Moon et al. 2010; Reiner
et al. 2011a; Smithwick et al. 20053; Taniyasu et al. 2013).

In mammal studies PFAA precursors (fluorotelomer alcohols, sulfonamide eth-
anols, perfluorosulfonamides, and fluorotelomer saturated and unsaturated carbox-
ylic acids) have been studied much less frequently. When studied, these compounds
are not as frequently detected as the PFCAs and PFSAs (Houde et al. 2011). Some
perfluorosulfonamides have been detected in harbor seals (Ahrens et al. 2009b)
and belugas from the Arctic (Reiner et al. 2011a; Tomy et al. 2004). Interestingly
there is a high prevalence of PFOSA in beluga samples from the high latitude
Arctic area. It was hypothesized by Houde et al. (2006c¢) that elevated levels of
PFOSA in Arctic beluga whales may be due to the belugas low biotransformation
potential of organohalogenated compounds. Further validating ber hypothesis, a
study by Reiner et al. (2011a) showed beluga samples from the Chukchi Sea, a
high Arctic location, have significantly higher concentrations of PFOSA compared
to beluga samples from Cook Inlet, AK (a miuch lower latitude). In the few studies
measuring PFDS, it has been found in mammal samples (Ahrens et al. 2009a;
Shaw et al. 2009).

5.7.3 Routes of Exposure

Similar to the fish and bird studies, when looking at the mammal samples as one
large group, patterns can be observed that help to understand routes of exposure to
PFAAs. Population density has been linked to higher concentrations of PFAAs
using wild rats in Japan (Taniyasu et al. 2013). Additionally, wood mice samples
from an industrialized area with a known fluorochemical plant have shown some of
the highest concentrations of PFA As in mammals (Hoff et al. 2004). Trophic levels
play an important role in the accumulation of PFA As. Studies have shown that apex
predators bave higher concentrations of PFAAs compared o lower trophic level
mammals (Muller et al. 2011; Tomy et al. 2004; Butt et al. 2010). Maternal transfer
of PFAAs to fetuses has been shown as a significant route of exposure in different
mammal species (Reiner et al. 2011a; Bytingsvik et al. 2012; Hart et al. 2008a;
Ishibashi et al. 2008).
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5.8 Trends

5.8.1 Tissue Distribution

Since PFAAs are found in protein rich matrices, the majority of wildlife studies
analyzed liver tissue, blood, serum, and plasma. However, as stated earlier, this can
lead to issues when comparing data among studies. In smaller wildlife the whole
body has been used for chemical analysis, but in large animals (fish, birds, and
mammals), different organs, whole blood, serum, plasma, and even eggs are used
for PFAA analysis. Additionally using only one matrix (liver, blood, etc.) for PFAA
analysis does not give a complete assessment of the animal’s body burden. In lim-
ited studies the tissue distribution of PFAAs has been examined.

58.1.1 Tish

Multiple tissue compartments within fish have been studied for PFAA contamina-
tion, including bile (Ahrens and Ebinghaus 2010), eggs (Giesy and Kannan 2001;
Kannan et al. 2005a), and other organs (Murakami et al. 2011; Quinete et al. 2009;
Peng et al. 2010), but the most common tissues are liver, muscle (fillets), or whole
body analysis. The highest concentrations of PFOS were reported in liver (Hoff
et al. 2003; Moody et al. 2001; Taniyasu et al. 2003), muscle (Delinsky et al. 2010),
or whole body (Ye et al. 2008b) of the studied fish. When the muscle of sardines and
anchovies were analyzed for PFA As in a study by Fernandez-Sanjuan et al. (2010),
no detectable levels of PFAAs were measured, but when whole body fish were ana-

reporied by others (Murakami et al. 2011; Quinete et al. 2009).

Other studies have examined the PFAA profiles of fish from the various tissues
available for analysis. Murakami et al. (2011) identified the highest concentrations
of total PFAAs in carp kidneys, followed by livers, ovaries, and muscles, in decreas-
ing order. Peng et al. (2010) measured the highest concentrations of total PFAAs in
eggs and liver of sturgeon. In the same study, perfluorosuifonamides were detected
in different compartments, such as the intestine, stomach and gills, with PFOSA
being the dominant PFAA in these tissues (Peng et al. 2010). PFOSA was detected
in higher concentrations than PFOS in swordfish blood, but was not above the limit
of quantification in corresponding livers of the fish (Kannan et al. 2002b).

Analyses of fish muscle and whole body for PFAA contamination can present
insight on the chemical body burden of the fish and the PFAA exposure to humans
via consumption. Multiple studies have specifically focused on measuring PFAAs
in fish collected from local fish markets and fisheries (Murakami et al. 2011; Luque
et al. 2010; Gulkowska et al. 2006; Senthilkumar et al. 2007; Yeung et al. 2009;
Zhao et al. 2011).
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58.1.2 Bird

Multiple tissue components of birds have been studied for PFAA contamination,
including blood (including whole blood, plasma and serum), egg (including yolk
and whole egg), livers, kidneys, feathers, muscle, gall bladder, spleen, and brain.
The dominant bird tissue for PFAA detection, as with other classes of wildlife, is
the tiver, where the highest concentrations of PFA As over other tissues were often
reported (Herzke et al. 2009; Taniyasu et al. 2003; Tao et al. 2006; Meyer et al.
2009; Zhang et al. 2010). When looking at less invasive tissues, Meyer et al.
(2009) found a positive correlation between PFAA levels in livers and feathers.
Dauwe et al. (2007) findings of extremely high PFOS levels (over 11,000 ng/g in
a sample) in the livers of great tits, roosting near a large fluorochemical plant, sug-
gested that they could be used as indicators of potential point-source environmen-
tal PFAA contamination. Bird blood and blood-based components have been
frequently used in contamination studies. Kannan et al. (2001 a) found higher con-
centrations of PFOS in plasma than those found in whole blood. Taniyasu et al.
(2003) and Tao et al. (2006) found higher concentrations of PFOS in liver than in
blood samples.

A few studies focused on evaluating the concentrations of various bird tissues
within a specific set of species. Holmstrom and Berger (2008) found the highest
PFOS concentrations were located in guillemot eggs, followed by chick hiver, adult
liver, kidney, and muscle, in decreasing order. Alternatively, the total distribution of
the higher-order PFCAs was highest in chick livers. Herzke et al. (2009) identified
similar levels of PFOS, PFOSA, PFHxS and perfluorodecanoic acid (PFDA) in the
plasma and eggs of the European shag, but higher levels of PFOSA and PFDA in the
liver. Total PFAAs was also higher in the liver of the species (Herzke et al. 2009).
Of the ten different tissues studied by Rubarth et al. (2011), livers had the highest
mean concentration of total PFAAs, followed by kidneys, lungs, gall bladder, and
blood.

Birds provide a unique compartment of measurement for contaminant expo-
sure studies; bird eggs are an easily accessible wildlife material that can represent
both the exposure of PFAAs to mothers and the subsequent contamination trans-
fer to progeny. In studies that evaluated PFAA contamination in different bird
tissues, eggs contained both the highest (Holmstrom and Berger 2008) and some
of the lowest concentrations {Verreault et al. 2005; Herzke et al. 2009) of PFAAs
when compared to other tissues. Eggs have also been suggested to be a mode of
PFAA excretion; this conclusion was suggested by the observed lower concentra-
tions of PFOS in adult mother livers than those in chick livers by Holmstrom and
Berger (2008). In addition to their environmental relevance, eggs represent a
human food source in some cultures and therefore a source of PFAA exposure.
Wang et al. (2008a) and Zhang et al. (2010) studied PFAA contamination in bird
eggs purchased from markets in China. Additionally, Wang et al. (2008a) found
that nearly all of the PFOS contamination in market chicken eggs was located in
the egg volk.
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58.1.3 Mammals

Similar to fish and bird studies, by far the majority of mammal studies examined
PFAAs n liver tissue. These studies tend to use liver as the matrix of examination
because it is more readily available compared to blood, serum, and plasma samples.
Many marine mammal samples are acquired opportunistically during strandings or
native subsisience hunts, processes that make it very hard to collect blood, serum,
or plasma samples.

There have been a few studies focusing on the tissue distribution in mammals.
Ahrens et al. (2009b) and Van de Vijver et al. (2003) examined the distribution of
PFAAs in harbor seals. These studies looked at different matrices, including liver,
kidney, spleen, lung, heart, blood, brain, muscle, thyroid, thymus, and blubber to
help understand the tissue disiribution and the overall body burden in harbor seals.
Liver tissue had the highest concentrations of PFAAs compared to the other tissues
measured in the studies (Ahrens et al. 2009b; Van de Vijver et al. 2005). In harbor
porpoises the liver, kidney, brain, muscle, and blubber tissues were examined for
PFAAs (Van de Vijver et al. 2007). Liver, kidney, and muscle tissue for tucuxi dol-
phin samples have been examined for PFAAs (Quinete et al. 2009). In the studies,
PFOS tended to be the dominant PFAA detected in the tissues followed by long-
chain PFCAs (Ahrens et al. 2009b; Van de Vijver et al. 2005, 2007; Quinete et al.
2009).

5.8.2 Sexand Age

Generally speaking, there have been few studies showing any sex related differ-
ences in reptiles, fish, and birds. Significant differences in PFOS concentrations
between genders of snapping turtles was reported by Kannan et al. (2005a), with
male spnapping turtles having a higher mean PFOS concentration than females. The
proposed rationale for this difference was due to the transfer of PFOS contamina-
tion to eggs (Kannan et al. 2005a). Male bass fish from a remote lake in New York,
United States had higher concentrations compared with female fish (Sinclair et al.
2006). Lower levels of PFAAs were seen in female birds from the United States and
Norway compared to their male counterparts (Sinclair et al. 2006; Butt et al. 2007a;
Bustnes et al. 2008).

Mammal studies give less clear conclusions for sex related similarities and dif-
ferences. In the majority of marine mammal studies there are no sex related differ-
ences. However, there have been differences noted in some studies. In beluga whale
liver samples from Alaska, males tended to have higher concenirations of most
PFAAs compared with female samples; however, female liver samples had signifi-
cantly higher concentrations of PFINA compared to the male samples (Reiner et al.
2011a). PFOS measured in sea otter livers (Kannan ct al. 2006) and grey seal livers
(Kannan et al. 2002b) showed significantly higher concentrations of PFOS in the
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male liver samples compared with the female samples. In contrast, female porpoise
livers from the North Sea showed significantly higher mean concentrations of PFOS
compared to the male porpoises (Van de Vijver et al. 2003).

Age related trends are not commonly seen in reptiles, fish, and birds. There are
some exceptions reported in the literature. Chinese alligator sera samples showed
higher concentrations of long-chain PFCAs in juvenile animals (2-9 years) com-
pared to adults ages 1015 and adults over 15 years of age (Wang et al. 2013).
Conversely, Chinese sturgeon showed an increase in long-chain PFCAs with age
(Peng et al. 2010).

Some mammal studies have reported age related differences. Most studies report
an age related decrease in PFAA concentrations. Whales and pinnipeds from
Antarctica, Canada, Burope, Russia, and the United States have all showed higher
concenirations of PFAAs in younger animals compared to adults (Tao et al. 2006;
Butt et al. 2007b; Van de Vijver et al. 2003; Ishibashi et al. 2008; Houde et al. 2005,
2006a; Fair et al. 2010; Abhrens et al. 2009a; Hart ot al. 2008a; Smithwick et al.
2006). Interestingly, there are studies done in the same mamals which indicate no
significant difference in age (Kannan et al. 2002b, 2005b; Van de Vijver et al. 2007,
Tomy et al. 2009; Butt et al. 2008).

5.8.3 Temporal Trends

There have been quite a number of retrospective, temporal studies examining PFAA
concenirations. The temporal studies in fish, birds, and mammals have shown mixed
results for PFAAs over time. There is a general trend of increase concentrations of
most PFAAs untl the 2000s, but beginning in the current decade the trends start to
become more specific to wildlife location and species.

Two studies on lake trout from Lake Ontario, Canada have shown temporal
increases in PFOS and PFCA concentrations from 1979 to 2004 (Martin et al.
2004b; Furdui et al. 2008). The temporal studies looking at bird liver and egg sam-
ples have shown similar results to the fish studies. Livers from thick-billed murre
and northern fulmar from Canada collected at three time points from 1975 to 2004
showed an increase in PFFOS and PFCAs (Buit et al. 2007a). Guillemot eggs col-
lected in the Baltic Sea from 1968 to 2003 showed an increase in PFOS concentra-
tions during the time period, with maximuom PFOS concentrations between 1997
and 2000 (Holmstrém et al. 2004). After 2000, there was a decrease in the PFOS
concentrations measured in the guillemot egg samples (Holmstwdm et al. 2004).
Peregrine falcon egg samples from Sweden, collected between 1974 and 2007,
showed an increase in PFOS from 1974 until 1984, with a leveling off effect starting
after 1984 (Holmstrdm et al. 2010). The long-chain PFCAs exponentially increased
in the peregrine falcon eggs over the whole study period (Holmstrom et al. 2010).

There are many more mammal temporal studies compared to temporal studies in
fish and birds. Current reviews from Butt et al. (2010), Houde et al. (2006¢, 2011),
and Sturm and Ahrens (2010) have discussed temporal trends in detail. This section
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will only briefly summarize information provided from those studies and discuss
temporal trend studies since the last review in 2011, Most temporal studies showed
a temporal increase of PFOS concentrations over the study time periods. However,
more recent long term temporal studies that encompass samples collected after the
phase out of PFOS have indicated some variations, with decreases in PFOS concen-
tration in some Arctic samples (Houde et al. 2006¢, 2011; Butt et al. 2010; Sturm
and Ahrens 2010). Long-chain PFCAs have shown an increase in most temporal
studies (Houde et al. 2006¢, 2011; Butt et al. 2010; Sturm and Ahrens 2010).

Beluga whale liver samples collected in the Alaskan Arctic showed an increase
in most PFAAs, specifically PFOS and long-chain PFCAs from 1989 to 2006
(Reiner et al. 2011a). In an assessment of grey seal liver tissues collected in the
Baltic Sea between 1969 and 2008 Kratzer et al. showed an increase of PFOS from
1974 to 2008 (2011). However, the authors note that the data was much more vari-
able after 1997 (Kratzer et al. 2011). Additionally in the grey seal liver samples, the
long-chain PFCAs showed a significant increase from 1974 to 1997 and then tended
to decrease or level off after 1997 (Kratzer et al. 2011). Harbor porpoises liver sam-
ples collected from the North Sea between 1980 and 2005 initially did not show any
ternporal trends for PFAAs (Galatius et al. 2011). However, after the removal of
neonates and lactating females, they found an increase in the levels of PFOS and
long-chain PFCAs. Marine mammal samples, including ringed seals, pilot whales,
and white-sided dolphins, collected in the Arctic and North Atlantic oceans showed
increases of long-chain PFCAs from 1984 to 2009 (Rotander et al. 2012). The data
for PFFOS in these same samples tells a very different story. PFOS concentrations in
the pilot whale samples showed an increase from 1984 until 2002; however after
2002 there was no temporal trend, even a slight decrease in PFOS concentrations
(Rotander et al. 2012). Conversely the concenirations of PFOS in ringed seal and
hooded seal liver samples did not increase during the sampling period (Rotander
et al. 2012). Roe deer livers collected from 1989 to 2010 in Germany showed an
increase in PFOS until 2000 (Falk et al. 2012). From 2000 until 2010 there was a
significant decrease in PFOS concentrations (Falk et al. 2012). Temporal trends
were investigated in liver tissues from harbor porpoises collected in the Baltic and
North Sea from 1991 to 2008 (Huber et al. 2012). PFOS did not significantly change
during the sampling period; however eight of the other compounds measured
showed significant temporal trends (Huber et al. 2012). Concentrations of PFHxS,
PFHpS, and PFOSA showed a significant decrease while the long-chain PFCAs
increased from 1991 to 2008 (Huber et al. 2012).

5.8.4 Food-Web Studies

There have been a few food-web studies of perfluorinated compounds. Most of
these food-web studies focus on bicaccumulation and biomagnification in the
aquatic environment (Haukas et al. 2007; Houde et al. 2006b, 2008; Kelly et al.
2009; Loietal. 2011; Renzi et al. 2013; Tomy et al. 2004, 2009; Powley et al. 2008).
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In addition, there has been one terrestrial food-web study looking at the biomagni-
fication of PFCAs and PFSAs (Muller et al. 2011). Reviews from Houde et al.
(2006¢, 2011), and Butt et al. (2010) provide insight into the food web studies. The
general conclusion from these studies is for PFOS and the long-chain PFCAs there
can be biomagnification in a given food-web. Unfortunately most of these studies
combine samples from different time points and locations in order to understand
biomagnification (Butt et al. 2010). These studies also use different matrices when
talking about biomagnification, which can be problematic (Houde et al. 2006c¢).
While these studies are significant, they may not give a complete picture about the
biomagnification of PFAAs.

5.9 Future Research and Conclusions

Until recently, the data coming out of different laboratories has not been comparable
and getting consistent data among laboratories was difficult. With the recent avail-
ability of Certified Reference Materials (CRMs), certified for PEAAs, there is anow
resource (o aid in the measurements of PFAAs (Reiner et al. 2012). The National
Institute of Standards and Technology has a variety of biological Standard Reference
Materials (SRMs) available, including fish tissue and bovine liver. The use of widely
available reference materials, like SRMs, improves the comparability of measure-
ments between individual laboratories.

There have been many Arctic studies from North America and Europe (Butt
et al. 2010). Although recently there have been some studies, there is limited infor-
mation from the Russian Arctic (Miljeteig et al. 2009). Since Russia encompasses
nearly two-thirds of the polar Arctic, it is essential to understand the distribution of
PFAAs in wildlife from this region. In addition to limited studies from the Russian
Arctic, the distribution of PFA As in wildlife populations from other regions around
the world, especially in the Southern Hemisphere, including Africa, Australia, and
South America, are still lacking. Measurements of PFAAs in wildlife from these
locations would increase our understanding of the persistence of PFAAs in the
Southern Hemisphere. There is also poor coverage of PFAAs from tropical areas
and the open ocean food webs. Additionally, terrestrial wildlife studies have been
limnited. There is a need to understand transport of PFA As to remote locations; espe-
cially the terrestrial locations that are only mnfluenced by atmospheric transport.

Since there are many areas around the world which have not been examined for
PFAAs, it is important to leverage already banked samples from these geographic
locations. There are 22 environmental specimen banks around the world (www.
inter-esb.org) which make ap the International Environmental Specimen Bank com-
munity. These specimen banks have wildlife and environmental samples, collected
in a systematic way, archived for long-term storage and future projects. They are an
underutilized resource that can provided samples to answer research questions
about environmental contamination, temporal trends, and spatial trends of emerging
compounds of concern, like PFAAs.
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A repository of measurement data, such as PFAA concentrations in wildlife,
would be a useful tool for the collection of findings by individual laboratories. This
could be in the form of a web-based database, possibly hosted by a consortium of
world’s environmental specimen banks. A web-based database which can provide
easy access to sample information (type of sample, species, etc.) and concentration
information from wildlife species around the world would be very useful to under-
stand the global distribution of PFAAs and their precursors. The world’s specimen
banks that are a part of the International Environmental Specimen Bank community
could combine their efforts to develop a database system that could be utilized to
betier understand the global distribution of PFAAs and other contaminants.

It is apparent that wildlife from around the world are exposed to PFAAs. There
is a tendency for animals living closer to industrialized regions to have higher con-
centrations of PFAAs compared to those living in more remote locations. The main
compound found in most wildlife species is PFOS| however, especially in the more
recent studies, the long-chain PFCAs are frequently being detected and measured.
Although there has been exponential growth in the analysis of wildlife samples,
there are still data gaps that need o be filled to help us understand environmental
exposure.
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Chapter 6
Metabolism and Pharmacokinetics

Naomi Kudo

Abstract Perfluoroalky! acids (PFAAs) are highly persistent and widely spread in
the environment. PFAAs were detected in various wildlife and human after 1960s
and the levels gradually elevated to 2000. In addition to the production of perfluoro-
carboxylic acids (PFCAs) themselves, fluorotelomer-based compounds were poten-
tial source of PFCAs. Fluorotelomer-based compounds can degrade through
atmospheric oxidation and biodegradation to form PFCAs. The biological half-lives
(tip) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS),
major contaminants in the environment, were calculated to be 3.5 and 8.5 years in
human, respectively. To elucidate the mechanisms by which PFAAs accumulate
in human, pharmacokinetics have been studied in experimental animals, however, in
rats, mice, monkeys and other animals, half-life (T,,) were hours to days, therefore,
great species-difference exist in t;, between experimental animals and human.
Recent studies identified partially the biological molecules responsible for protein
binding, transmembrane transport of PFCAs. In addition, transplacental and lacta-
tional transports are thought to be an important exposure routes of these chemicals,
because developmental toxicity of PFAAs is thought to be one of primary toxic
events of PFAAs. Physiologically-based pharmacokinetic (PBPK) models are pro-
posed to understanding kinetics of PFAAs in biological systems.

Keywords Absorption * Distribution ¢ Gestational transfer ¢ Lactational transfer ¢
Protein binding » Clearance ¢ Renal transport « PBPK model

6.1 Absorption

PFOA and its salts are well absorbed following oral exposure irrespective of species
and sex. After a single oral dose of [“C]PFOA (11.2 mg/kg) in male rats, at least
93 % of dosed [“*CJPFOA was absorbed (Johnson et al. 1979). In mice fed a high-fat
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diet, initial absorption of [“*CJPFOA was 98.8 % within 48 h (Jandacek et al. 2010).
Female rats were administered 2 mg PFOA by stomach intubation, and entire dosed
nonionic fluorine was recovered in urine and feces within 96 h, suggesting that
dosed PFOA was entirely absorbed (Ophaug and Singer 1980). Serum level of
organic fluorine was highest 4.5 h after administration, and then gradually decreased
indicating that PFOA was rapidly absorbed from gastrointestinal tract. Hundley
et al. administered a single 10 mg/kg oral gavage of [CJPFOA ammonium salt to
male and female rats, mice, hamsters and rabbits (Hundley et al. 2006). The recov-
ery of radioactivity in urine, feces, tissues, cage wash and expiration products was
ranged 71-105 % 120-160 h after dosing. The results suggest that almost dosed
PFOA ammonium salt was absorbed by gastrointestinal tract. In castrated Angus
cattle, orally dosed [“CIPFOA (1 mg/kg) was rapidly absorbed and excreted (101 %
recovery) in the urine within 9 days of dosing (Lupton et al. 2012). The serum level
reached maximum 24 h after the dosing. The mechanistic aspects of intestinal
absorption of PFOA remain to be studied. Non-absorbable dietary lipid olesira
(sucrose polyester) reduced initial absorption of tetrachlorobiphenyls but not ['*C]
PFOA, suggesting that partition of PFOA to olestra is very low in intestine (Jandacek
et al. 2010).

Perfluorocarboxylic acids (PFCAs) other than PFOA also seem to be well
absorbed from intestine. Perfluorohexanoic acid (PFHxA) is likely to be rapidly
absorbed and eliminated in male and female Sprague-Dawley rats and CD-1 mice,
because essentially the 100 % of dosed [“CJPFHxA (100 mg/kg) was eliminated
in vrine within 24 h (Gannon et al. 2011). In male and female Wistar rats, over
90 % of dosed perfluoroheptanoic acid (PFHpA) was found in urine (Kudo et al.
2001a).

Perfluorooctanesulfonate (PFOS) is also well absorbed from gastrointestinal
tract in male and female rats (Chang et al. 2012). Male and female rats were admin-
istered orally with 4.2 mg/kg of potassium [“C]PFOS, and the recovered radioactiv-
ity in carcass, urine, feces, plasma and red blood cells was almost 95 % of the dose.
Only 3.6 % of dosed radioactivity was recovered in digestive tract. Fate of PFOS
was studied in steers after a single oral dose of § mg/kg PFOS (Lupton et al. 2014).
The recovery of PFOS in plasma, feces, muscle, liber, bile, urine, lung, kidney,
spleen and carcass reminder was 60 % through 28 days after a dose. It is unclear
whether lower bioavailability is responsible for less recovery of PFOS or not.

Plasma PFOA concentration was determined after repeated inhalation in rats by
Kennedy et al. (1986; Hinderliter et al. 2006a). Male and female rats were exposed
nose-only to aerosol atmospheres of 0, 1, 10 or 25 mg/m?® PFOA for 6 h (Hinderliter
et al. 2006a). Plasma PFOA concentrations were proportional to airborne concen-
trations in both male and female rats, but plasma PFOA was disappeared more
rapidly in female rats. Following repeated inhalation exposures, male rats
demonstrated an accumulative pattern while little daily carryover was observed in
the plasma in female rats over the 3 weeks period (Hinderliter et al. 2006a).

PFOA is dermally absorbed, but permeability of PFOA is not fully elucidated
yet. O’Mally and Ebbins showed high mortality of male and female rabbits in
which approximately 40 % of the shaved trunk of animals were applied to 1,000
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and 2,000 mg/kg PFOA in a saline slurry 24 h/day, 5 days/week, for 2 weeks sug-
gesting that PFOA is dermally absorbed (O’Mally and Ebbins 1981). Rabbits and
rats were dermally treated with ten applications of ammonium salt of PFOA at
doses of 0, 20, 200 or 2,000 mg/kg, resulting in dose-dependent increase in blood
organofluorine amounts (Kennedy 1985). Penetration of PFOA ammonium salt
was estimated in vifro using rat and human skin (Fasano et al. 2005). PFOA ammo-
nivm salt penetrated rat skin with permeability coefficient of 3.25x 10 cm/h, and
only 1.44 % of applied chemical penetrated through rat skin by the end of 48 h
exposure period. For human skin, permeability coefficient was 9.5x 1077 cm/h,
and only 0.048 % of applied chemical was penetrated through human skin. Franco
et al. estimated dermal penetration of ["*CJPFOA in human and mouse skin in vifro
and in mouse in vivo (Franco et al. 2012). Mice were exposed to 25 ul. of 0.5-
2.0 % PFOA solution in acetone on the dorsal surface of each ear for 4 days.
Serum concentrations of PFOA in mice were 150-226 ug/mL. In vifro skin perme-
ation study revealed that 39 %, 23.4 % and 24.7 % of appliecd PFOA (0.5 mg/50 uL.
acetone) penetrated across mouse skin, human full-thickness skin and human epi-
dermis samples (0.64 cm?), respectively, within 24 h. They also compared perme-
ability coefficient of PFOA in heat-separated human epidermal membrane between
different pH. Permeability coefficient was 5-6x 10~ cr/h at pH 5-5.5, whereas
5.5x107% cm/h at pH 2.25, suggesting that non-ionized PFOA easily penetrate the
membrane than ionized PFOA. However, permeability coefficient was 100 times
greater in this study than the study by Fasano et al. (2005). The difference was not
fully explained, but acetone may facilitate permeability of PFOA in the latter
study.

6.2 Distribution

6.2.1 Distribution to Blood and Tissues

PFOA is distributed mainly to the serum, liver and kidney in male rats after single
and repeated exposure (Hundley et al. 2006; Ylinen and Auriola 1990; Vanden
Heuvel et al. 1991; Kudo et al. 2007; Cui et al. 2010). PFOA levels of lung and heart
are relatively high, followed by skin, testis and spleen. Very low but significant
amounts were detected in adipose tissue and brain (Hundley et al. 2006; Kudo et al.
2001a). In female rats, more PFOA distributed to kidney than male rats 2 h after
dosing (Vanden Heuvel et al. 1991). Tissue distribution of PFOA depends on the
dose (Kudo et al. 2007; Cui et al. 2010). The ratio of PFOA concentration between
plasma and liver and was 1:0.82 at 40 umol/kg while the ratio was 1:2.22 at 0.1 umol/kg
2 h after iv dose (Kudo et al. 2007). One possible explanation for liver-addressed
accumulation is that transport system such as transporters is responsible for uptake
of PFOA into hepatocytes (Han et al. 2008). The ratio of serum to whole blood
concentrations of PFOA was approximated 2:1 (Kudo et al. 2007). Considering
volume displacement by red blood cells, almost PFOA is in plasma or serum but not
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in blood cells. In mice, PFOA accumulated primarily in liver, followed by blood
skin, kidney and other tissues after 168 h after an single oral administration (Hundley
et al. 2006). In chicken, high concentrations of PFOA were detected in blood, liver
and kidney after repeated oral administrations (Yeung et al. 2009). Tissue levels of
PFOA were determiined in lactating cow fed PFOA-contaminated glass silage and
hay (approximately 200 and 1,900 ug/kg dry matter, respectively) for 28 days
(Kowalczyk et al. 2013). At the end of slaughting period, PFOA was detected in
plasma, liver and kidney at the concentrations approximately 10 ug/kg. The levels
in milk and muscle were one tenth and one hundredth of the former tissues, respec-
tively. Tissue distributions of PFCAs having nine or more carbon atoms were poorly
estimated. Perfluorodecanoic acid (PFDA) seems distribute to mainly serum, liver,
kidney, lung and lesser to brain in rats after single ip dose (Ylinen and Auriola
1990). Perfluorononanoic acid (PFNA), PFDA, perfluoroundecanoic acid (PHUA)
and perfluorododecanoic acid (PDoA) were detected in the kidney, liver and bladder
of harbor seals from Dutch Wadden Sea (Van de Vijver et al. 2005). [“CJPFHxA
was shown to be distributed mainly to plasma, liver and kidney in male and female
rats (Gannon et al. 2011). Large amounts of ["*C]PFHxA was detected in bladder in
both mice and rats, and ["*CIPFHxA in all tissues rapidly disappeared, suggesting
rapid urinary elimination.

In the case of PFOS and other perfluoroalkylsulfonates (PFASs), high concentra-
tion was observed in liver, serum and kidney. Distribution of potassiam salt of [“C]
PFOS was determined in rats after a single oral dose of 4.2 mg/kg (Chang et al.
2012). Hepatic PFOS concentration was 21 ug/g and approximately ten times higher
than plasma concentration. Concentrations of other tissues were less than plasma
concentrations and the order of kidney, lung and spleen. The levels in brain and
abdominal fat were extremely low. In steers, PFOS concentrations in plasma, liver
and kidney were approximately 53 ug/kg, 18 ug/kg and 3.7 ug/kg, respectively,
28 day after single oral administration at 8 mg/kg (Lupton et al. 2014). In this study,
PFOS was concentrated in bile where PFOS concentration was 37 ug/mL, while
concentrations of other tissues were approximately 5 ug/g or less. Dose-related dif-
ference in tissue distribution of PFOS is demonstrated by Cui et al. (2010). In this
study rats were received oral dose of PFOS at high dose (5 and 20 mg/kg) for
28 days, and tissue-specific accumulation was not significant compared to other
studies. Kowalczyk et al. determined tissue distribution of PFAA in the cows fed
naturally PFAA (PFBS, PFHxS, PFOS and PFOA)-contaminated food for 28 days
(Kowalczyk et al. 2013). PFOS concentrations were 2,464, 2,952, 1,074, 145 and
9.1 ug/kg (L) in plasma, liver, kidney, and milk, respectively. It is noteworthy that
muscle concentration was less than one tenth of liver, over 40 % of dosed PFOS was
reserved in this tissue. In this study, concentrations of perfluorohexanesulfonic acid
(PFHxS) were 419, 61, 98, 19, 1.9 ug/kg (L), respectively. The levels of perfluoro-
butanesulfonic acid (PFBS) were less than 1 ug/kg (L), although contamination lev-
els of PFOS, PFHxS and PFBS in the diet were comparable.
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6.2.2 Distribution to Fetus and Breast Milk

Distribution of PFAAs to fetus and milk is paid special attention because these
chemicals exhibit developmental toxicity in experimental animals at low dose
(Chap. 8). Indeed, PFAAs were detected in human breast milk (So et al. 2006;
Kérrman et al. 2007; Tao et al. 2008; Kim et al. 2011), neonatal blood immediately
after birth (Spliethoff et al. 2008), umbilical cord blood or plasma (Kim et al. 2011;
Spliethoff et al. 2008; Inoue et al. 2004; Apelberg et al. 2007; Midasch et al. 2007;
Zhang et al. 2013a) and amniotic fluid (Zhang et al. 2013a; Stein et al. 2012).
Pharmacokinetic study was performed in rats which were orally administered with
ammonium salt of PFOA once daily at doses of 3, 10 or 30 mg/kg/day starting on
gestation day (GD) 4 (Hinderliter et al. 2005). PFOA was detected in placenta,
amniotic fluid, embryo, fetus, and milk indicating gestational and lactational trans-
fer of PFOA. Steady-state concentrations in milk were approximately 10 % of those
in maternal plasma (Hinderliter et al. 2005). On GD21, PFOA concentrations in
amniotic fluid and fetus were slightly higher than those in milk, and PFOA concen-
trations in placenta were approximately two times of those in milk. The concentra-
tion of PFOA in fetal plasma was approximately half of those in maternal plasma.
In female rats, estimation of PFOA transfer to milk and fetus is difficult in single
dose study because of rapid disappearance (half-life of approximately 2 h) (Ohmori
et al. 2003; Han et al. 2012). By contrast, half-life of PFOA is estimated to be
approximately 16 days, therefore, mice were used for many studies (Lau et al. 2006;
Abbott et al. 2007; White et al. 2007; Wolf et al. 2007; Reiner et al. 2009; Fenton
et al. 2009). Disposition of PFOA was determined in mice received single oral dose
of PFOA at doses of 0.1-5 mg/kg on GD17 (Fenton et al. 2009). Serum concentra-
tions of pups were highest at PND1 and gradually decreased by PND18, suggesting
that transplacental transfer is responsible for substantial serum PFOA in fetus.
When mice were received repeated oral dose of PFOA at 5 mg/kg during gestation,
whole blood concentrations of pups were higher than those in dams on postnatal day
(PND) 10 and decreased to the level of dams on PND 20 (White et al. 2007). The
same trend was observed in the study of Fenton et al. where mice received a single
oral single dose at a dose of 5 mg/kg on GD17 (Fenton et al. 2009). In addition to
gestational transfer, pups are exposed to PFOA by lactation. Abbott et al. demon-
strated that serum PFOA levels in dams nursing pups up to weaning were signifi-
cantly lower than those in dams without pups at weaning when mice were received
repeated oral dose on GD1-GD17 at dose ranging from 0.1 to 1 mg/kg (Abbott et al.
2007). Cross-Foster study was performed in mice where significant amounts of
PFOA were detected in control pups nursed by dams that received repeated oral
dose of PIFOA at a dose of 5 mg/kg on GD1-17 (Wolf et al. 2007). Milk:serum dis-
tribution ratio in dams were estimated to be 1:0.11-1:0.56 (Fenton et al. 2009).
PFOA concentration of serum, urine and mammary tissue and milk in dams exhib-
ited U-shape from GD18 to PND18 while inverse U-shaped curve was observed in
the amounts of PFOA in pups, suggesting milk-borne PFOA transfer from dams to
pups (Fenton et al. 2009). PFOS also distributes to fetus and milk in rats and mice.
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When pregnant mice were received oral dose of PFOS at 1, 2, 3 or 5 mg/kg from
GD2 through GD20, serum concentrations of PFOS in pups were close to those in
dams on GD21 (Lau et al. 2003). Similar results were demonstrated in the study of
Chang et al., where rats were given daily oral doses at 0.1, 0.3 and 1.0 mg/kg/day
from GDO to GD20. On GD 20, serum levels of PFOS in fetus were close to those
in dams (Chang et al. 2012). In the study of Luebker et al. both male and female rats
were received daily dose of PFOS at dose levels of 0.1, 0.4, 1.6 and 3.2 mg/kg for
6 weeks prior to mating, during mating, and for female rats, through gestation and
lactation (Luebker et al. 2003). At the end of lactation, serum levels of pups were
close to those of dams. Cross-foster study suggested that pups are exposed to PFOS
during lactation (Luebker et al. 2005). When mice were received oral doses of PFOS
at4.5, 6.5, 8.5 or 10.5 mg/kg/day from GD15 to GD18, serum levels of pups were
approximately two times higher than those in dams on PND135 (Abbot et al. 2009).
Dams without pups after PNDG6 had significantly higher levels of PFOS in serum
than the dams with pups (Abbot et al. 2009). Borg et al. estimated tissue distribution
of [¥SIPFOS that was intraperitoneally administered on GD16 (Borg et al. 2010).
The levels of [®SIJPFOS in liver and lungs of fetuses and pups were higher than
maternal blood level. Brain levels of [PS]PFOS in fetuses and pups were higher
than brain of dams and comparable to maternal blood.

Transfer of PFAAs to breast milk, fetus and amniotic fluid was estimated in
humans by comparing PFAA concentrations between maternal serum, breast milk,
and amniotic fluid. In general, transfer efficiency from maternal blood to cord blood
is high while those from maternal blood to amniotic fluid and milk are low. In addi-
tion, PFOA exhibits higher transfer efficiency compared to PFOS. Carbon chain
length seems to influence transfer efficiency of PFCAs. Kérrman et al. detected
PFHxS, PFOS, PFOA, PFNA, PFDA, perfloroundecanoic acid (PFUnDA) and per-
fluorooctanesulfonamide (PFOSA) in serum and PFHxS, PFOS, PFOA, PFNA, and
PFOSA in milk in 12 primiparous women (Kérrman et al. 2007). The mean ratio
between serum and milk concentration was 1:0.01 for PFOS, 1:0.02 for PFHxS and
1:0.07 for PFOSA. The ratios for PFOA and PFNA were uncertain because these
were detected only a few milk samples. In the study of Kim et al. where PFAA con-
centrations were determined in maternal blood serum, cord blood serum and breast
milk in 35 women, the concentration was highest for PFOS followed by PFOA,
PFUnDA and PFHxs in maternal serum, cord serum and breast milk (Kim et al.
2011). The mean ratios between maternal serum and milk were 1:0.03 for PFOS and
1:0.04 for PFOA, and those between maternal serum and cord blood serum were
1:1.93, 1.02, 0.72 and 0.48 for perfluorotridecanoic acid, PFOA, PFHxS, PFOS,
respectively. Midasch et al. estimated the ratios between maternal plasma and cord
plasma in 11 women advanced in pregnancy to be 1:0.6 and 1:1.26 for PFOS and
PFOA, respectively (Midasch et al. 2007). According to Inoue et al. the ratio
between maternal serum and cord blood serum was 1:0.32 in 15 pregnant women at
gestation weeks between 38 and 41 (Inoue et al. 2004). Zhang et al. estimated the
levels of various PFAAs in 27 matching samples of maternal serum, cord blood,
amniotic fluid and placenta in pregnant women (Zhang et al. 2013a). PFHxS, PFOS,
PFOA, PENA, PFDA, PFUnDA and PFDoA were detected in all samples while
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PIHxA and perfluoroheptanoic acid (PFHpA) were not detected in some samples of
maternal blood, placenta and cord blood. Only PFOA was frequently detected, and
PFOS, PFDA, PFUnDA and PFDoDA were not detected at all in ammniotic fluad
samples. Comparison of transfer efficiencies from maternal blood to cord blood
between PFAAs revealed a U-shaped trend of C,—C,, PFCAs with increasing carbon
chain length that seems to be an integrated result of opposite trend of the ratio
between maternal blood and placenta and between placenta and cord blood. Both
PFOS and PFHxS showed lower transfer efficiency compared to PFCAs. Similar
trend in the ratio between maternal blood and cord blood were observed between C8
and C13 PFCAs by Liu et al. who estimated the levels of PFAAs in 50 pairs of
women and their newborns (Liu et al. 2011). This trend was also observed in the
ratio between breast milk and maternal blood although the ratio between breast milk
and maternal blood was one order of magnitude lower than the ratio between cord
blood and maternal blood (Iiu et al. 2011). The ratio between amniotic fluid and
maternal serum was estimated to be 1:0.039 for PFOS and 1:0.078 for PFOA in the
study by Stein et al. (2012).

6.3 Protein Binding

Interactions of PFAA with biological matrices in plasma and tissues likely contrib-
ute their tissue distribution and bioaccumulation patterns. PFCAs bind to serum
proteins (Ylinen and Auriola 1990; Jones et al. 2003). It was reported that more than
99 % of PFDA was bound to protein in the serum after a single dose in rats (Ylinen
and Auriola 1990). The primary PFOA-binding protein in plasma is serum albumin
(Han et al. 2003). Many experimental methods have been employed to study PFAA
binding to albumins, including BSA, HSA and rat serum albumin (RSA). These
involve not only traditional techniques such as size exclusion column, equilibrium
dialysis (Chen and Guo 2009) and ligand displacement measurement (Jones et al.
2003; Han et al. 2003; Chen and Guo 2009) but also novel methods including moni-
toring protein’s native fluorescence (Chen and Guo 2009; Wu et al. 2009; Zhang
et al. 2009; Hebert and MacManus-Spencer 2010; MacManus-Spencer et al. 2010;
Qin et al. 2010), surface tension (MacManus-Spencer et al. 2010), circular dichro-
ism (Wu et al. 2009; Zhang et al. 2009), ligand blotting assay (Han et al. 2003),
isothermal titration calorimetry (Wu et al. 2009), YF-NMR (Han et al. 2003;
MacManus-Spencer et al. 2010), heteronuclear single quantum coherence
NMR. Binding affinity (association constant, Ka) obtained by monitoring native
albumin fluorescence and those by other methods are summarized in Table 6.1. The
values are variable when different methods are employed. Some studies suggest that
there are two groups of binding sites on serum albumin, namely, high affinity site
and low affinity site (Wu et al. 2009; MacManus-Spencer et al. 2010; Bischel et al.
2010). Ka values between 10! and 10° M~ can be categorized as the low affinity
site, whereas Ka values between 10* and 10° M~! can be categorized as the low affin-
ity site (Han et al. 2012). Molecular modeling study where structure and energies of
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Table 6.1 Association constant (Ka) of PFAA-albumin binding

N. Kudo

Fluorescent
method HSA BSA RSA
PFHpA 9.4x10%
PFOA 2.5x10% 5.5x10%° 1.5%10° 8.0x 104
2.2x10% 4.4x10%
2.7x10°%¢
PFNA 5.0x10% 0.1x10%° 6x10°, 9x10%¢
2.6x10%
PFDA 4.8x10%? 3x10°, 5x10%¢
6.9%x10°°
PFUnDA 4.3x10%° 2x10°,0.1x10%¢
PFDoDA
PFHxS 1.2x10%=
PFOS 8.9x10%2
2.2x10%
4.4%x10%e
Other methods
PFBA 1.1x10°%s
PFOA 3.1x10%" 1.4x 106 (1.4), 0.2x 106 (4.3) 2.8x10° (7.8)
2.6x10% (7.2) 1.3x10°%
PENA 2.1x10°%¢ 3.3%x10°(2.9), 1.1x 105 (4.6)
2.6x10°k
PFDoA 1.2x10°%2
PFBS 2.2%x10° 6.5%10°¢
PFOS 7.6x10°¢

Values represent Ka (M™') and values in parenthesis represent number of binding sites
References for fluorescent method: “Hebert and MacManus-Spencer (2010), *Wu et al. (2009),
°Chen and Guo (2009), IMacManus-Spencer et al. (2010), <Qin et al. (2010), Zhang et al. (2009)
References for other method: #ligand-displacement measurement (Chen and Guo 2009), Pequilib-
rium dialysis (Wu et al. 2009), 'size-exclusion column (Han et al. 2003), ‘equilibrium dialysis
(Bischel et al. 2010), 'nano ESI-MS (Bischel et al. 2010)

the binding sites were determined, supported two groups of affinity sites for PFCAs
(Chen and Guo 2009). Other studies suggest one affinity value between 10* and
10° M~ (Chen and Guo 2009; Hebert and MacManus-Spencer 2010; Qin et al.
2010). No significant difference in Ka values is observed between PFHxA, PFOA,
perfluorononanoic acid (PFNA) and PFDA for both HSA and BSA (MacManus-
Spencer et al. 2010) while the binding of PFAAs to HSA or BSA exhibits a trend of
increasing binding strength with increased chain length (Chen and Guo 2009;
MacManus-Spencer et al. 2010; Qin et al. 2010; Bischel et al. 2010). Proposed
number of binding site was ranged from 1 to 11 in these studies (Han et al. 2012).
Some studies suggest PFOA binds to Sudlow’s binding Site I and Site II. According
to Salvalaglio et al. the binding sites are common either to fatty acid binding sites or
Sudlow’s binding Site I and Site II and the maximum number of binding for PFOA
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and PFOS was 9 and 11, respectively (Salvalaglio et al. 2010). At low concentrations,
however, binding stoichiometry of PFAA and albumins seem 1-2 (Salvalaglio et al.
2010). The physiological relevance of these binding sites remains unclear. To
date, study that compare species difference in albumin binding is limited, significant
difference in albumin binding is not shown between HSA and BSA in the above
studies. Compared to PFCAs, information of the binding of PFSA is limited. To
date, observed properties of protein binding cannot fully explain species- and sex-
related difference in renal elimination of PFAA.

Binding of PFOA to proteins are studied in liver and testis (Kudo et al. 2007;
Vanden Heuvel et al. 1992a). Covalent binding of PFDA to TCA-insoluble compo-
nents was observed in liver and testis in vivo (Vanden Heuvel et al. 1992a). Kudo
et al. demonstrated that PFOA distributed to membrane fraction of the liver com-
pared to female rats after PFOA dosing (Kudo et al. 2007). PFOA binds to both liver
form and kidney form of o2u-grobulins, male rat-specific proteins exist in liver,
plasma and kidney, in vitro in physiological conditions (Han et al. 2004). PFOA
seems to bind to a2u-grobulins on fatty acid-binding sites with Kd values in 107 M
range, which is estimated by fluorescence competitive binding assay using dansyl
undecanoic acid. Considering Kd values and concentrations of plasma and tissues of
these proteins, a2u-grobulins cannot adequately explain sex difference in renal
clearance of PFOA (Han et al. 2004). Binding of PFAAs to liver fatty acid-binding
protein was estimated (Luebker et al. 2002; Woodcroft et al. 2010). In fluorescence
competitive binding assay using dansyl undecanoic acid, ICs, values of PFOS and
PFOA were calculated to be 0.01 uM and over 10 uM; these values are two or three
order of magnitude higher that natural ligand oleic acid (Luebker et al. 2002).
Binding affinity of PFOA, estimated fluorometrically, was shown to be an order of
magnitude less than that of oleic acid (Woodcroft et al. 2010).

6.4 Metabolism

6.4.1 PFAA Metabolism

PFAAs are not metabolized in animals. Ophaug and Singer demonstrated that nei-
ther the ionic fluoride level in the serum nor the rate of ionic fluoride excretion in
the urine was altered by PFOA administration (Ophaug and Singer 1980). Vanden-
Heuvel et al. demonstrated that single radioactive peak corresponding to PFOA was
detected in urine and bile samples after intraperitoneal administration of 9.4 umol/
kg [CIPFOA (Vanden Heuvel et al. 1991). Thin layer chromatography was per-
formed with liver extract and the chromatographic behavior of radioactivity was
closely resembled that of PFOA. No evidence of phase II metabolite of PFOA was
found in urine of rats received single intraperitoneal administration of 50 mg/kg
PFOA (Ylinen et al. 1989). In in vifro experiments, no glucuronide conjugate of
[“CIPFOA was detected using microsomes prepared from rat and human liver,
kidney and intestine in vitro (Kemper and Nabb 2005).
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6.4.2 Metabolic Production of PFAAs

PFA As are well known to be wide-spread contaminants although their chemical and
physical properties are not consistent with those of that typically undergo atmo-
spheric long-range transport. In addition, the production of PFCAs themselves was
very small compared to the production of fluorotelomer-based polymer and phos-
phate (Buck et al. 2011). In addition to the direct release of PFAAs from industrial
emissions and commercial products, these are produced by degradation of other
precursor compounds including fluorotelomer alcohols (Butt et al. 2014). Precursor
compounds degrade to form PFAAs through biotransformation by microorganisms
and animals, and atmospheric oxidation (Young and Mubry 2010). Therefore, expo-
sure to precursor chemicals of animals results in accumulation of PFAAs within
their body. 1H, 1H, 2H, 2H-Perfluorodecanol (8:2FTOH), a fluorotelomer alcohol
(FTOH), is used in most biotransformation studies in vive and in vifro.
Biotranstormation of FTOH was reported by Hagen et al. in early 1980s (Hagen
et al. 1981). They found PFOA, 2H, 2H-perfluorodecanoic acid (8:2FTCA),
2H-perfluorocecenoic acid (8:2FTUCA) and unidentified metabolite in plasma
samples in male rats after single oral dose of 8:2FTOH. Plasma levels of 8:2FTCA
and unidentified metabolite were transient whereas PFOA levels increased with
time. Following studies in 2000s, additional metabolites PFNA (Martin et al. 2005;
Kudo et al. 2005; Henderson and Smith 2007; Fasano et al. 2009; Himmelstein et al.
2012), PFHxA (Fasano et al. 2009; Himmelstein et al. 2012) 2H, 2H, 3H,
3H-perfluorodecanoic acid (7:3FTCA) (Fasano et al. 2009; Himmelstein et al.
2012), 2H, 3H-perfluorodecenoic acid (7:3FTUCA) (Nabb et al. 2007), and
O-glucuronide and O-sulfate (Martin et al. 2003) were determined in 8:2FTOH
treated animal samples. In in vifro studies using hepatocytes, liver microsome or
cytosolic fractions, additional metabolites of 8:2FTOH were detected such as 2H,
3H-perfluorodecenoic acid (7:3FTUCA), 2H, 2H-perfluorodecanal (8:2FTAL),
2H-perfluorodecenal (8:2FFTUAL), glutathione-conjugates of FTUAL (Martin et al.
20035; Fasano et al. 2009; Nabb et al. 2007), 7:2ketone, 7:3p-keto acid, 2H, 2H, 3H,
3H-perfluorodecanal (7:3FTAL), 2H, 3H-perfluorodecenal (7:3FTCA) (7:3FTUAL)
and 7:3FTCA taurine conjugate (Nabb et al. 2007). Fasano et al. studied fate of
[3-14C18:2FTOH after a single oral dose in both conditioned rats following 45 days
of daily oral dose of unlabeled 8:2FTOH and non-conditioned rats (Fasano et al.
2009). Approximately 80-90 % of the total radioactivity was found in feces, and
major analyte in feces was 8:2FTOH 168 h after [3-"“C]8:2FTOH dosing. In vrine
and tissues, approximately 5-10 % of radioactivity was found in both conditioned
rats and non-conditioned rats. Inhalation study was performed by Himmelstein
et al. (2012). Male and female rats were exposed by nose-only inhalation for 6 h at
8:2FTOH concentration of 3 mg/m® or 30 mg/m?’. During the exposure period, the
levels of parent compound were low and it was not detected at 12 and 24 h, suggesting
rapid clearance (elimination and/or metabolism). The most abundant metabolites
were 7:3FTCA, PFOA and 7:2FTCA. One-compartment model analysis revealed
that yields of 7:3FTCA and PFOA were approximately 2 % and 1 % or less,
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respectively. As for humans, elevated levels of PFCAs in ski wax technicians com-
pared to general population (Nilsson et al. 2010a). Exposed levels of 8:2FFTOH were
determined to be up to 92,000 ng/m® via air (Nilsson et al. 2010b). Precise analysis
of blood samples of male professional ski wax technicians reveled that not only
PFCAs of C,—C,s and some PFAS, but 6:2FTUCA, 8 2FTUCA, 10:2FTUCA,
3:3FTCA, 5:3FTCA and 7:3FTCA were detected. The result indicates that FTOHs
are metabolized to PFCAs in humans (Nilsson et al. 2013).

Mono- and di-fluoroalkyl phosphate esters (monoPAP and diPAP), fluorinated
surfactants with high production volume, are candidates of PFCA source. DiPAP
were orally or intravenously administered to rats, and kinetics of these chemicals
were estimated (D’Eon and Mabury 2011). A mixture of 4:2, 6:2, 8:2 and 10:2
monoPAP and diPAP were intravenously or orally administered to male rats.
Bioavailability of diPAPs decreased as chain length increased. In addition to parent
chemicals, PFCAs of C,—C;, were detected in plasma, suggesting that diPAPs
undergo hydrolysis to produce FTOH which are metabolized to form PFCAs. By
contrast, monoPAP were not absorbed from gut.

6.5 Clearance

6.5.1 Biological Half-Life

Early studies on PFAA paid attention to their toxicity. PFOA shows sex-related dif-
ference in LDs, effects on lipid metabolism in rats (Kawashima et al. 1989; Uy-Yu
et al. 1990; Griffith and Long 1980) whereas no significant sex-related difference
was observed for PFDA (Olson and Andersen 1983; George and Andersen 19806).
Following studies revealed that such differences in the magnitude of biological
responses observed in PFOA are mainly due to the difference in T,, (Ylinen et al.
1989, 1990; Vanden Heuvel et al. 1992b; Olsen et al. 2007; Kudo et al. 2000; Kudo
and Kawashima 2003). Chain length dependent trend of T}, of PFCAs in rats was
demonstrated by Ohmori et al. (2003). Namely, PFCA with longer carbon chain
length exhibits longer T,,,. The study on retired fluorochemical production workers
revealed that T, for PFOS, PHHxS and PFOA were calculated to be 4.8 years,
7.3 years and 3.5 years, respectively (Olsen et al. 2007), which is a magnitude of
difference from other experimental animals. It is concluded that PFAAs exhibit spe-
cies-, sex- and carbon chain length-dependent T\,. Species difference is the most
important issue because it is an important factor in evaluating safety of these chemi-
cals to human based on animal data. Studies on the difference in sex, carbon chain
length and species have been performed mainly for PFOA (summarized in
Table 6.2). Very short half-lives (approximately 2 h) of PFOA are observed in male
and female rabbits and female rats (Chmori et al. 2003; Kudo and Kawashima
2003). All animals studied exhibit shorter half-lives of days or weeks. Even in
primates (Rhesus monkeys and Japanese macaques), half-lives are estimated to be a
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month or less (Harada et al. 2005; Kudo and Kawashima 2003; Butenhoff et al.
2004). The most reliable human half-live of PFOA is shown to be 3.5 years (geo-
metric mean) for retired flnorochemical production workers (Olsen et al. 2007) and
2.3 years for participants of C8 Health Project from mid-Ohio valley of West
Virginia where environmental PFOA exposure level is high (Bartell et al. 2010).
Half-life of PFOA was estimated to be 3.26 years in two-tear follow-up study of
resident drinking water contaminated with PFOA (Brede et al. 2010). Species dif-
ference is shown in other PFCAs although available data are limited (Table 6.2).
Half-life of PFOS also exhibits species difference (Han et al. 2012). Similar to
PFCAs, Species difference in half-lives of PFFOS and other perfluoroalkylsulfonic
acids (PFAS) is observed. Longer half-lives are observed in humans compared to
other animals; human T, of PFOS is 4.8 years while those in other animals are
from several days to several months (Han et al. 2012). Recently, sex-difference was
demonstrated in human, namely, T, of PFHxS and PFOS are 7.7 and 6.7 years in
young females, respectively, whereas these are estimated to be 35 and 34 years,
respectively, in males and old females (Zhang ct al. 2013b).

6.5.2 Fecal and Urinary Elimination

PFAAs are nonvolatile and metabolically inert, total body clearance depends on
elimination into urine and feces. PFAAs excreted in bile undergo fecal elimination
or enterohepatic circulation. Fecal elimination of PFCAs was less than 5 % in both
male and female rats 120 h after dosing (Kudo et al. 2001b). Biliary excretion of
PFOA was studied in rats (Vanden Heuvel et al. 1991; Kudo et al. 2001b; Johnson
et al. 1984) and humans (Harada et al. 2007). Estimated biliary clearance rates are
3.30 and 3.52 mL/kg/day in male and female rats, respectively, and 1.06 mL/day/kg
in humans (Harada et al. 2007). PFCAs undergo enterohepatic circulation in rats
and humans because cholestyramine treatment significantly increases fecal elimina-
tion of PFOA or PFOS in rats (Johnson et al. 1984) and that of PFOA in humans
(Genuis et al. 2010). Fecal elimination rate in rats seems slow compared to urinary
elimination rate due to slow biliary clearance and entero-hepatic circulation.

Renal elimination is the most critical process in determining total body clearance
of PFA As. Renal clearance (CLy) is determined in various animals for PFOA and
other PFCAs (Summarized in Table 6.2). Chain length difference in CLy was dem-
onstrated between PFHA, PFOA, PFNA and PFDA in rats (Ohmori et al. 2003).
Pharmacokinetics of PFBS was determined as well (Chang et al. 2012). Between
four and ten carbon chain length PFCAs, the trend of a shorter chain length leading
to a shorter T}, is observed except for PFBA (four carbons), suggesting that elimi-
nation machinery of PFBA may differ from the longer chain PFCAs (Han et al.
2012). In addition to carbon chain length difference, sex difference in CLy is also
interesting. Early studies demonstrated rapid urinary elimination of [“CJPFOA in
female rats compared to male rats (Vanden Heuvel et al. 1992b). Sex difference is
prominent in rats (Vanden Heuvel et al. 1991; Ohmori et al. 2003; Kemper and
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Nabb 2005) and Hamster (Hundley et al. 2006), but not observed in rabbits (Kudo
and Kawashima 2003) and mice (Kudo and Kawashima 2003; Lou et al. 2009). In
rats, sex hormones were identified as major factors in regulating CLg. Castration of
male rats greatly increased CLy of PFOA, while testosterone treatment of castrated
male rats or female rats reduced to the normal level of male rats (Vanden Heuvel
et al. 1991; Kudo et al. 2002). By contrast, 17p-estradiol treatment of castrated male
rats increased urinary PFOA elimination to the level of females (Ylinen et al. 1989).
Urinary elimination increased as growing after weanling in female rats while male
rats remain low (Hinderliter et al. 2006b). Recently, sex difference in ClLyg was dem-
onstrated in human for some PFAAs (Zhang et al. 2013b). Half-lives of PFOA and
other PFFCAs in males and older females were longer than those of females. The
values of PFOA CLy are greatly different between species. These trends of CLy
seem to explain difference in total clearance or T, between various species, sexes,
and PFFCAs having different carbon atoms. Indeed, linear relationship between total
clearance (Cly,) and renal clearance (CLgy) is observed in male and female rats
treated with PFHA, PFOA, PFNA or PFDA (Ohmori et al. 2003). For PFOA, nega-
tive correlation is observed between T, and CLjy in male and female animals (rats,
mice, rabbits, dogs, Cynomolgus monkeys and Japanese macaques) Han et al.
2012). Therefore, it is concluded that slow renal elimination rate is responsible for
prolonged T, in various animals. Estimated human CLy of PFOA is 0.03 mlL/day/
kg (Harada et al. 2005) which is greatly lower than other animals including rats,
mice, dogs, rabbits, hamsters, and even primates. In the study of Zhang et al. CLy
was estimated for PFOA and other PFAAs in healthy volunteers in China, and
PFOA CLy was estimated to be 0.29 ml/kg/day and 0.79 ml/kg/day for young
female group and male and old female group (Zhang et al. 2013b). Though available
information is limited for human, and exposure conditions to human are quite dif-
ferent from those in experimental animals, human CLy of PFOA seems very low
compared to other animals.

6.6 Renal Transport

One of the most important aspects of PFAA toxicity is long half-lives of these
chemicals due to slow urinary elimination in human. Mechanistic studies have been
performed to elucidate slow urinary elimination of PFOA in humans. Renal elimi-
nation is a combined process involving glomerular filtration, tubular secretion and
tubular reabsorption. PFCAs, unbound (f) or bound to small molecules in plasma,
undergo glomerular filtration at glomerular filtration rate (GI'R). Transporter pro-
teins residing on basolateral membrane and brush-border membrane in proximal
tubular cells are responsible for uptake into cells or efflux from cells of substrates.
Renal secretion and reabsorption is the net result of these transport systems.
Therefore, secretion and reabsorption are thought to be directional transcellular
transport system across proximal tubular cells; the former involves basolateral
uptake and apical efflux and the latter involves apical uptake and basolateral efflux.
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Table 6.3 Net renal tubular secretion or reabsorption of PFOA in different species

Net Net
GFR CLR secretion reabsorption | Reabsorption

Species Gender | (L/day/kg) |(ml/day/kg) | (ml/day/kg) | (ml/day/kg) ' (%)
Rabbit Female 4 670 590 Not applicable

Male 4 640 560 Not applicable
Rat Female {14.4 666 378 Not applicable
Dog Female (5.3 50.8 55 52

Male 5.3 43 63 59
Japanese |Female ;8.5 32 138 81.2
macaque | Male 8.5 15 155 91.2
Rat Male 14.4 18.2 270 93.7
Mouse Female :16.7 16 318 95.2

Male 16.7 10 324 97.0
Human 2.57 0.03 51 99.94

Reprinted with permission from (Han et al. 2012). Copyright 2012 American Chemical Society
GFR Glomerular filtration rate

Net tubular secretion=CLR — fu-GFR. where fis, the unbound fraction, is assumed to be 0.02. Net
tubular reabsorption = fi- GFR — CLR. Reabsorption (%) =(Net tubular reabsorption)/(fi- GFR) x 100

CLg is expressed as following equation: CL, =GFR X f + secretion — reabsorption .
Therefore, (secretion — reabsorption) is obtained by subtracting GFR x fi from CLy.
Han et al. summarized net secretion or reabsorption for PFOA in rabbits, rats, dogs,
mice, Japanese macaque and humans based on GIR and CL assuming that fu value
is 0.02 in all species (Table 6.3) (Han et al. 2012). As mentioned above, PFCAs are
highly bound to albumin in plasma with high affinity, however, available study is
limited on differences in binding affinity between species, carbon chain length.
Comipared to calculated net absorption value with GFR, 99.94 % of PFOA is reab-
sorbed in human. In male and female mice, male rats and male Japanese macaques,
over 90 % of PFFOA is reabsorbed. By contrast, PFOA seems undergo active secre-
tion in male and female rabbits and female rats. It is interesting that reabsorption
rate in humans are slower than that in dogs, mice, male rats and Japanese macaques
despite that the highest percentage of reabsorption is predicted in human. Low GFR
in human may be one of the reasons for low CLjy of PFOA.

Early study demonstrated that probenecid inhibit renal elimination of PFOA,
suggesting that some transporters are responsible for renal PFOA transport (Vanden
Heuvel et al. 1992b). To explain sex hormone-regulated CLy of PFOA, regulation of
gene expression of transporters by sex hormone status was studied, and candidate
transportes were proposed (Kudo et al. 2002). Candidate of PFOA transporters are
organic anion transporting proteins of SLC22 family, SLCO family and ABC fam-
ily, expressed on brush border membrane or basolateral membrane of proximal
tubular cells. In humans, OAT1, OAT2, OAT3 and OATP4C1 are uptake transporters
whereas MRP6 and OSTa,f are efflux transporters on basolateral membrane, and
OAT4, URATI1, OATP1A2 and NPT1 act as uptake transporters whereas MRP2,
MRP4 and BCRP act as efflux transporters (Han et al. 2012). In rats, uptake
transporters are Oatl, Oat3 and Oatpdcl whereas efflux transporters are Mrp6 and

ED_002974_00000598-00177



6 Metabolism and Pharmacokinetics 167

Ostoyf on basolatetal membrane, and Oat2, Qat5, Uratl, Qatplal, Oatpla3vl,
Oatpla3v2, Oatpla6 and Nptl act as uptake transporters whereas Mrp2 and Mrp4
act as efflux transporters (Han et al. 2012). PFOA transporter was first reported by
Katakura et al. (2007). Rat organic anion transporter (Oat) 3 and rat organic anion
transporting polypeptide (Oatp) 1 were shown to facilitate [“CJPFOA uptake in
xenopus oocytes. Expression of human OAT1, human OAT3, rat Oatl or rat Oat3
facilitated PFOA uptake in HEK293 cells (Nakagawa et al. 2008). Following stud-
ies revealed that hOAT4 (Nakagawa et al. 2009; Yang et al. 2010), rOatplal (Yang
et al. 2009; Weaver et al. 2010), rat Oatl (Weaver et al. 2010), rat Qat3 (Weaver
et al. 2010), rat Uratl (Weaver et al. 2010) and human URAT1 (Yang et al. 2010)
facilitate PFOA transport when transfected in HEK293 cells or CHO cells. Human
OAT2 (Nakagawa et al. 2008), rat Oat2 (Nakagawa et al. 2009; Weaver et al. 2010),
human OATP1A2 (Yang et al. 2010) and rat Uratl (Weaver et al. 2010) were shown
not to facilitate PFOA transport. Indirect evidence that CLy of PFOA in Eisai
Hyperbilirabinemic rats, defect of Mrp2, was not different from that in normal
Sprague-Dawley rats suggests Mrp2 is not responsible for renal PFOA transport
(Katakura et al. 2007). It cannot be excluded the possibility that undefined trans-
porters are responsible for renal PFOA transport. For quantitative analysis of renal
transport, affinity between medium-chain PFCAs and transporters were determined;
estimated Km value of rQatl is approximately 50 uM for PFHA and PFOA
(Nakagawa et al. 2008; Weaver et al. 2010), those of rOat3 are 80 uM for PFOA
(Nakagawa et al. 2008) or 66 uM for PFOA for PFOA (Weaver et al. 2010) and
175 uM for PFNA (Weaver et al. 2010), and, those of rOatplal are 162 uM (Yang
et al. 2009) or 127 uM (Yang et al. 2009) for PFOA, 21 uM for PFNA (Weaver et al.
2010) and 29 uM for PFDA (Weaver et al. 2010). As for human transporters, Km
value of hOAT1 for PFOA is 48 uM (Nakagawa et al. 2008), that of hOAT3 is 49 uM
(Nakagawa et al. 2008), that of hOAT4 is 172-310 uM and that of hURATI1 for
PFOA is 64 uM (Yang et al. 2010). Among PFOA transporters, apical uptake trans-
porters are rQatplal, hOAT4 and hURAT1 and basolateral uptake transporters are
rOatl, rOat3, hOAT1 and hOAT3 (Han et al. 2012). No efflux transporter is deter-
mined to date. Slow renal elimination of PFNA and PFDA may be due to their
higher affinity to rOatplal that is responsible for reabsorption. However, slow uri-
nary elimination rate of PFDA cannot be explained by rOatplal alone because of
faint expression of rOatplal in female rats. rQatplal is highly expressed in rat liver,
but physiological significance in the liver is not clear. For systematic understanding
of renal clearance of PFA As, more information is required on transporters, transport
systems both in in vivo and in silico.

6.7 Pharmacokinetic Model

Pharmacokinetic properties of PFA As have been studied in both experimental ani-
mal and humans. The most notable aspect of pharmacokinetics for PFAAs is that
they exhibit significant differences in plasma half-lives and renal clearance between
species, sex, and carbon chain length. To assess human risk of PFAAs, framework
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is required to understand and estimate human pharmacokinetics based on animal
study and available human data. Currently proposed physiologically-based pharma-
cokinetic (PBPK) models incorporated a saturable renal tubular reabsorption
process (Lou et al. 2009; Andersen et al. 2006; Tan et al. 2008; Loccisano et al.
2011, 2012a). These models contain compartments for plasma, liver, kidney, filtrate,
skin, and a lumped compartment for remaining body tissues, therefore, tissue:plasma
partition coefficients for these tissues, which are based on the data obtained by
experiments, are used as parameters. Renal reabsorption maximum (7mc) and affin-
ity constant (K7) for reabsorption process are applicable to renal reabsorption model.
PBPK models also involve parameters for biliary excretion, urinary elimination,
fecal elimination, unsorbed dose, liver protein binding, intestinal absorption, plasma
protein binding as chemical parameters, and for body weight, cardiac output, blood
flow, fractional tissue volumes, fractional blood flows and hematocrit as physiologi-
cal parameters. Parameters obtained by fitting are different between the models
applied; Tmc values for PFOA in male and female rats were estimated to be
0.516 mg/h/kg and 0.00935 mg/kg/h, respectively, in the study of Tan et al. (2008),
while these were 270 mg/h/kg and 3 mg/h/kg, respectively, in the study of Loccisano
et al. (2012a). The former study doesn’t involve liver protein binding and the latter
study applied Km value of rat Oatplal for PFOA as Tmc. In the monkey model, K7
value for PFOA was estimated by fitting to be 0.055 mg/L (0.13 uM) (Loccisano
et al. 2011), which is two or three order magnitude lower than that of human trans-
porters, estimated in vifro (Han et al. 2012). Recently, it was reported that proben-
ecid, a inhibitor for SLC22 family transporters such as Oatl and Oat3, effectively
inhibited urinary excretion of PFOA in female rats but rather enhanced in male rats
and in isolated perfused rat kidney (Han et al. 2012). Possible explanation is that
PFOA renal tubular secretion is responsible for PFOA elimination in urine in female
rats or that basolateral efflux to circulation is inhibited in male rats. As for PFOS,
PBPK models are proposed by Andersen et al. (2006), Tan et al. (2008), and
Loccisano et al. 2011, 2012a), although mechanistic analysis in vitro is limited
compared to PFCAs. Recently, a new PBPK model was developed based on a previ-
ously reported model (Loccisano et al. 2011) where lung and brain are added to
body compartment but skin was removed, and compared simulated data with exper-
imental data in the study of Perez et al. (2013). Considering transplacental transfer
during gestation and transfer to milk during lactation, PBPK models were devel-
oped in mouse for PFOA (Rodriguez et al. 2009) and in rat for PFOA and PFOS
(Loccisano et al. 2012b, 2013).

6.8 Conclusion

Renal elimination is a key determinant of biological half-life of PFAAs. Renal
PFAA elimination mechanisms are studied in the aspect of membrane transport by
transporters across both basolateral membrane and brushborder membrane of renal
tubular cells. These data greatly improve our understanding of PFAA renal
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transport. However, it remains to be solved how renal tubular secretion system
contribute net transfer across renal tubular cells. Transport system for PFAS is not
studied yet except for inhibition study. In addition to transporter study, studies on
the properties of albumin binding are increasing. More information on mechanistic
representation of renal tubular transfer, estimation of albumin binding properties,
and human data is required to improve PBPK model to predict human kinetics.
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Chapter 7
Metabolic Effects PFAS

Qixiao Jiang, Hui Gao, and Lei Zhang

Abstract Among the various biological effects PFAS perfluoroalkyl and polyfluo-
roalkyl substances (PFAS) exert on living organisms, metabolic effects are important
and have attracted considerable attention in PFAS studies in vifro and in vivo.
Although PFAS are metabolically inert themselves, they can interfere with endogenous
metabolic processes and thus do have the ability to exert effects on metabolism. The
alteration on metabolism could induce a wide range of biochemical and physiologi-
cal changes. Metabolic effects have various connections with other systemic toxici-
ties induced by PFAS and potentially serve as the fundamental basis for other
observed toxicities. Conversely, other systemic toxicities could potentially affect
the metabolic balance of an organism, and thus induce secondary metabolic effects
as well. This chapter discusses the molecular basis of PFAS-induced metabolic
effects including experimental animal and human data regarding metabolic effects.
While the major focus of this chapter is on metabolic effects, some systemic and
organ-specific toxicities are also discussed, as it is necessary for a comprehensive
discussion. A good understanding of PFAS-induced metabolic effects could help us
to better handle the potential health risks associated with PFAS exposure.

Keywords Metabolic effects ¢ Structure-activity relationship » Peroxisome
proliferator-activated receptors » Esirogen receptor « Thyroid hormone receptor ¢
Leptin receptor » Carbohydrates » Fatty acids « Uric acid » Thyroid function

This chapter covers the following topics on the metabolic effects of PTAS:

* Structure-activity relationship
Introduce the structural basis of the metabolic effects of PFAS

* The molecular targets i.nvolved in the metabolic effects
Discuss the molecular targets of PFAS-induced metabolic effects
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» Laboratory data on the metabolic effects of PFAS

Summarize experimental animal data on the metabolic effects of PFAS
+ Human data on the metabolic effects of PFAS

Summarize human data on the metabolic effects of PFAS
¢ Organ specific metabolic effects

Discuss the metabolic effects on main affected organ systems separately

7.1 Relationship Between the Structure of PFAS
and the Effects on Metabolism

PFAS are a class of organofluorine compounds that have all hydrophobic hydrogens
replaced with fluorine. Most PFAS share the common structure of a long fatty chain.
Therefore, they have similar chemical properties based on their structural similarity.
The PFAS most commonly found in human blood are PFOS (CiF:S0;), PFOA
(CeF s H) and PFHXS (CF350s) (Fig. 7.1 and 7.2). The images were represented
by the ChemBioDraw software (http://scistore.cambridgesoft.com/) and Discovery
Studio Viewer 2.5 (Accelrys Software Inc.).

The Log P values of PFOS, PFOA and PFHxS were predicted by ChemBioDraw
software. Theses Log P values suggest that the representative PFASs are hydrophobic
and they can easily penetrate through the cell membrane. This lipophilic property
also makes it difficult for the excretion of these PFASs.

The long fatty chain structures of the representative PIFAS indicate that hydro-
phobic interactions play an important role in the binding of these molecules to their
receptors. The sulfonic acid and carboxylic acid groups contribute to the polar inter-
actions or hydrogen binding interactions of PFAS-receptor binding.

Peroxisome proliferator-activated receptor alpha (PPAR«), a major regulator of
lipid metabolism in the liver, was a main target for PFAS (Rosen et al. 2008).
Molecular docking was performed to predict the binding patterns of PFAS in the
structure of PPARo. The Glide 3.5 software (Schré dinger Inc, supported by
Shanghai Institute of Materia Medica Chinese Academy of Sciences) was used in
the docking process. The A chain of PPARo (PDB Entry: 4BCR, www.pdb.org) was
used as the receptor. A cubic box (with length of 36 A) containing the whole receptor
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Chemical Formula: CgHF,0,8 Chemical Formula: CHE;:0, Chemical Formula: CJHF ;0,8
Molecular Weight: 500.13 Molecular Weight: 414.07 Molecular Weight: 400,31
Bofling Peint: 260 *C Boiling Point: 189 °C Boiling Poimt: 238.5 °C
LogP: 5.14 Log P: 4.46 Log P: 3.93

Fig. 7.1 The structures and chemical properties of representative PFAS
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PFOS

Fig. 7.2 3D structures of representative PFASs, the molecules were displayed by ball-stick and
CPK models, respectively

Fig. 7.3 Ribbon (a) and surface (b) representation of PFASs in the structure of PPARa

(chain A) was defined as the active site. Standard precision was selected to make the
docked the ligands (PFOS, PFOA and PFHxS) search their binding site from the
whole protein. Discovery Studio Viewer 2.5 and UCSF Chimera 1.8 software were
used for the result representation (Pettersen et al. 2004).

As shown in Fig. 7.3, the representative PFASs (PFOS, PFOA and PFHxS) binds
to the same site in the structure of PPARx. The PFAS ligands also share similar
binding modes in their binding sites. The fatty chains of PFASs penetrate into an
internal pocket of the PPAR« structure, and the acid groups located in the opening
of the pocket.

The binding site of PFAS was lined by residue Met220, Cys276, Thr279, Ser280,
Thr283, He317, Phe318, Met320, Leu32l, Val324 and Met355. The ligand
(WY11468) in the structure of PPARa also locates in the hydrophobic pocket
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Fig. 7.4 3D representation of PFOS, PFOA and PFHxS in the binding site of PPAR«a

formed by the above residues. In Fig. 7.4, the surface was colored from blue to
orange with the decrement of polarity. Therefore, hydrophobic interactions play a
key role in the binding of PFAS in the interaction site of PPAR«.

Peroxisome proliferator-activated receptor gamma (PPARY), which regulates
fatty acid storage and glucose metabolism, is also the target of PFAS. Molecular
docking studies were also performed to investigate the binding of PFAS in the
structure of PPARy. The structure of PPARY with a decanoic acid in its structure
(3U9Q) was used as the receptor in the docking study. Other parameters were sct as
the same with data in the PPARa study (Fig. 7.5).

The PFASs (PFOS, PFOA and PEFHXS) also bind to the same region in the siructure
of PPARy. There is a long and narrow opening at the binding site of PFAS. The whole
structure of PFAS locate into the pocket close to the surface of the structure (Fig. 7.6).

The PFAS bind to the same site with the ligand decancic acid, which was made
by Cys285, Arg288, Ser289, Ala292, Tle326, Tyr327, Leu330, Leu333, Phe363,
Met364 and Hie449. Hydrophobic interactions, formed by the fatty chain of PFAS
and surrounding amino acids, make important contributions to the ligand-receptor
binding. Hydrogen bond interactions also facilitate binding of PFAS to PPARYy.
PFOS and PFOA share similar binding patterns; their acid groups form hydrogen
bond interactions with Arg288. While PIFHxS has a different binding mode (the acid
group extends to the other side of the pocket), the sulfonic group binds to the NH of
Hie449 by hydrogen bond interactions.

Estrogen receptor alpha (ERoy was also demonstrated to be a receptor for the
binding of PTAS in human bodies. The molecular docking process was also
performed to predict the binding mode of PFASs in the structure of ERo. The A
chain of ER« (2QZ0) was sclected as the receptor in the docking studies. Other
parameters were also set as the same with data in the PPAR« study (Fig. 7.7).
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Fig. 7.6 3D representation of PFOS, PFOA and PFHxS in the binding site of PPARY

Unlike the binding patterns of PFAS in PPARa and PPARY, the representative
PFAS bind to the surface domain of ERa. The long fatty chains of PFAS extend into
a narrow channel, and the acid groups locate in the opening of the channel. There
are good spatial fittings between the structures of the ligands and the surface of the
binding site (Fig. 7.8).

The binding site of PFAS in the structure of ERa was lined by residue Glu323,
Pro324, l1e326, Glu353, Met357, [le386, Leu387, Gly390, Trp393, Arg394, Phed45

ED_002974_00000598-00191



182 Q. Jiang et al.

Fig. 7.7 Ribbon (a) and surface (b) representation of PFASs in the structure of ER«

Fig. 7.8 3D representation of PFOS, PFOA and PFHxS in the binding site of ERa

and Lys449. Hydrophobic interactions formed between representative PFAS and

surrounding amino acids make major contributions to the ligand-receptor binding.
The docking results show that the representative PFAS could bind to the active

site of PPAR« and PPARY, or bind to the region close to the active site of ERa. It is
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difficult for endogenous ligands to bind to the catalytic sites, if the PFAS have
occupied those regions. Thus, PFAS disturb the function of these receptors by
interfering with the ligand-receptor interactions.

7.2 The Molecular Targets Involved in the Metabolic
Effects of PFAS

PFAS induce metabolic effects by interacting with various molecular targets, includ-
ing specific and non-specific ones. This section gives a comprehensive review of the
known specific molecular targets involved in the metabolic effects of PFAS. The
non-specific effects are also mentioned.

7.2.1 Receptor Specific Metabolic Effects of PFAS

PFAS can induce metabolic effects by affecting specific receptors. These effects are
relatively well-studied and characterized. Receptor-specific metabolic effects can
be induced by primary or secondary actions. The primary action is due to the ability
of PFAS to directly mimic endogenous ligands of the target receptors, thus agoniz-
ing or antagonizing the target receptors. This type of effects could be attributed
mainly to the chemical structure of the PFAS, as detailed in Sect. 4.1. On the other
hand, the secondary action of PFAS on receptors may not be attributed to their
ligand-mimicking, but to their effects on signaling pathways by interference with
the levels of ligands or receptors. While the primary actions, especially impacts on
the PPARSs, are well characterized, the second actions are less studied and harder to
elucidate. Nevertheless, this section covers both primary and secondary actions of
PFAS on the receptors that could induce metabolic effects.

7.21.1 PPARa

As detailed in Sect. 4.1, the main molecular targets of PFAS are the peroxisome
proliferator-activated receptors (PPARs), of which PPARo and PPARY are the major
ones. PPAR« is a nuclear receptor mainly known for its role in regulation of lipid
metabolism. High level of PPARa expression is found in the liver. Other tissues
with high levels of expression include kidney, heart, muscle and adipose tissue. The
endogenous ligand for PPAR« is fatty acid. Upon activation, PPAR« dimerizes with
Retinoid X receptor (RXR), binds to peroxisome proliferator hormone response
elements (PPREs), and regulates various genes, including those responsible for
fatty acid metabolism such as fatty acid binding proteins (FABPs) and acyl CoA
oxidase (ACOX) (Latruffe et al. 2000).
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Most PFAS have affinity for PPARo, and serve as agonists. Upon exposure,
PFAS could induce the expression of downstream genes and hence a series of
biological and/or pathological alterations in the exposed organism. PFOA is one of
the most prominent PFAS in the environment and is known for its potency to act on
the PPAR o receptor. Many studies have confirmed that PFOA could activate PPAR«,
as reported by Rosen et al. (2008), Minata et al. (2010), and Sudmqvist et al. (2012).
However, the effect of PFOA on PPAR« is not always agonism. For example, when
PFOA and the PPAR« agonist WY 14,643 were compared for their transcriptional
effects, PFOA induced PPAR« independent effects, mainly xenobiotic metabolism
gene inductions (Rosen et al. 2008). Furthermore, in PPARco-null mice, PFOA is
still capable of inducing a series of gene expression changes, confirming the PPAR«
independent role of PFOA (Rosen et al. 2008). In another study on developing
chicken embryos, it was also observed that WY 14,643 could induce similar but not
exactly identical effects to PFOA, suggesting that the effect of PFOA on PPAR« is
not a purely agonism (Jiang et al. 2013).

Other PFAS, such as PFOS and PFHXS, also possess the characteristics of
PPARo agonism, but the degree of agonist effect varies depending on the specific
compound and target species. Due to this variability, one should take caution when
evaluating the effects of PFAS on metabolism based solely on PPAR« agonism.

7212 PPARy

Aside from PPAR«x, PFAS could also affect PPARy. Like PPARo, PPARy belongs
to the PPARs family, but the endogenous ligands are mainly eicosanoids. PPAR vy
mainly regulates fatty acid storage and glucose metabolism. PFAS, such as PFOA
and PFOS, are demonstrated to be capable of activating PPAR vy as well as PPAR«
(Takacs and Abbott 2007). Thus PPAR v is also an important molecular target for
the ability of PFAS to induce metabolic effects.

7.2.1.3 Estrogen Receptor

PFAS are known as endocrine disruptors, and have been shown to be capable of
directly interfering with estrogen receptor (Liu et al. 2007; Kjeldsen and Bonefeld-
Jgrgensen 2013). Since estrogen receptor has the ability to regulate metabolism, the
interference with estrogen receptor could indeed result in profound metabolic
effects. More detailed information about the effects of PFAS on estrogen receptors,
however, will be discussed in other chapters.
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7.2.1.4 Thyroid Hormone Receptor

The thyroid hormone signaling pathway is important for development, cariogenic
metabolism, and the cardiovascular system. Impacts on thyroid hormone receptors
could lead to disrupted metabolism. Thyroid hormone receptors have two subtypes:
TRa and TRP. Both TR« and TR can attach to thyroid hormone response clements
(TRE) in the DNA, and become activated when thyroid hormones, T3 or T4, bind to
the receptors, initiating various gene transcriptions.

In laboratory models, PFAS were associated with decreased circulating thyroid
hormone levels. Wei et al. (2008) reported that PFOA exposure inhibited genes
responsible for thyroid hormone biosynthesis in rare minnows. However, contradic-
tory results were reported in human studies. Jain (2013) summarized NHANES
2007-2008 data that indicated an association between elevated circalating total T3
levels and PFOA exposure levels. Total T4 levels were also found to be increased
when circulating PFHxS levels were elevated. Because of the important role of TH
signaling in development and the cardiovascular system, rescarchers started to
observe an association between PFAS-induced developmental toxicity and the inter-
ruption of thyroid hormone levels. Ongoing research will likely shed more light to
better delineate this characteristic of PFAS.

7.2.1.5 Leptin Receptor

Leptin is a hormone that regulates appetite, thus is involved in the etiology of obe-
sity and potentially other metabolic-originated diseases. Leptin receptor is located
in the hypothalamus. When leptin binds the receptor, the receptor activation induces
physiological effects, mainly regulating energy intake and expenditure. Thus leptin
signaling is important to metabolism.

PFAS., when developmentally exposed to rodents, are known to induce increased
body weight later in life. Hines et al. (2009) reported that in their developmental
mouse model, a low dose of PFOA (0.01-0.3 mg/kg) significantly increased body
weight and leptin levels in the mice when they reached mid-life. This suggests that
a disrapted leptin signaling pathway could contribute to PFOA-induced body weight
increases. However, PFAS-induced alterations in leptin levels are not completely
understood at this point. Leptin is a hormone associated with the maintenance of a
lean body weight, but PFAS both increased leptin levels and body weight. When
additional data, such as leptin receptor alterations following developmental PFOA
exposure become available, this effect might be better elucidated.
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7.2.2  Non-specific Metabolic Effects of PFAS

Although many specific molecular targets have been identified for PFAS, there are
conditions where non-specific metabolic effects can occur. When systemic expo-
sures to PFAS occur at high doses, there could be non-specific effects that occur
throughout the living organism, including metabolic effects. These effects have
been observed both in human and in experimental animal models, but have been
relatively less studied.

Change in body weight is one major endpoint that has been reported w be
affected by PFAS exposure. Epidemiological data from 2005 to 2010, in a Mid-
Ohio Valley community, revealed a negative association between PFOS exposure
and birth weight among full-term infants (Darrow et al. 2013). In animal studies,
high doses of PFAS significantly decreased body weight (Hines et al. 2009; Wolf
et al. 2007). No exact mechanism has been identified for this type of general toxic-
ity. Interference with fatty acid metabolism might partially contribute to the body
weight loss, but is not sufficient to account for the reported changes alone.

Other non-specific effects also exist, such as development retardation. Such
effects are usually difficult to quantify, and can be widely assigned to metabolic
effects. With additional studies, the precise molecular targets and mechanisms
behind these effects might be identified.

7.3 Laboratory Data on the Metabolic Effects of PFAS

This section covers existing laboratory data on metabolic effects of PFAS. For
clarification, direct metabolic effects (alterations in metabolic substrate levels or
metabolic activity levels) and indirect metabolic effects at genetic level (alterations
in metabolism-related gene expression) are discussed separately.

7.3.1 Direct Metabolic Effects
7.3.1.1 Effects on Fatty Acids

The impact on fatty acid metabolism is the most prominent effect observed in
laboratory animals or cell cultures following PFAS exposure. As mentioned in pre-
vious sections, PFAS can bind to and activate PPARa. Since PPAR« is the major
component in regulating fatty acid metabolism, it could induce a series of metabolic
effects. This is one of the major mechanisms for the metabolic effects of
PFAS. Numerous studies have reported impacts on fatty acid metabolism following
PPARo activation (Abbott et al. 2012; Arukwe and Mortensen 2011; Yang 2010).
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However, PPARa may have independent effects on other biological activities, as
demonstrated by Rosen et al. (2008).

PFOA has been shown to interfere with fatty acid metabolism and cholestero}
synthesis in the liver (Haughom and Spydevold 1992). Cholesterol metabolism is
especially interesting, since a significant decrease in Hmgecr, acyl CoA cholesterol
acyltransferase (ACAT) activity is observed that is consistent with a decreased
serum cholesterol level after 24 h when PFOA was fed to rats. Similar resulis were
reported by Guruge et al. (2006), in which Hmger activity was significantly down-
regulated at doses of 3, 10 and 15 mg/kg PFOA in female rats.

In addition to the changes of these cholesterol metabolism-related genes, altera-
tions in cholesterol levels were also directly observed. PFOA and PTFOS exposure
induced a decrease of serum cholesterol levels in male Sprague-Dawley (SD) rats
(Martin et al. 2007). An earlier study also revealed that relatively high doses of
PFOA exposure in Wistar rats could lead to cholesterol accumulation in the liver
(Kawashima et al. 1995). The decrease in serum cholesterol levels and the increase
in liver cholesterol levels can be potentially explained by the fact that PPAR« ago-
nism enhanced the cholesterol reverse transport to liver (Bighetti et al. 2009).
Guruge et al. (2006) proposed an interesting hypothesis with respect to PFOS. Since
PFOS could be incorporated into cell membranes and affect cell membrane fluidity
and membrane potential (Hu et al. 2003), the role of PFOS seems to be similar to
that of cholesterol, thus the reduction of cholesterol could be the result of functional
substitution by PFOS. While the interference with PPAR« is generally thought to be
the main cause of the cholesterol reduction, this functional substitution hypothesis
could indeed explain the cholesterol-lowering effect in lab models of PFAS.
Nonetheless, more work is needed before solid conclusions can be reached.

7.3.1.2 Effects on Carbohydrates

Litde is known about PFAS exposure-induced effects on carbohydrate levels.
However, the effect of PFAS exposure on glycogen is better studied and known. In
one study, exposure to PFOA depleted glycogen in zebrafish livers, indicating that
the metabolic effects of PFAS include impacts on glycogen, especially on glycogen
deposition (Hagenaars et al. 2013). This gives interesting mechanistic evidence to
the decreased hatchability of chickens following PFAS exposure (O’ Brien et al.
2009). Since the chicken hatching process largely depends on the deposited glyco-
gen in the hatching muscle, the interrupted glycogen deposition could potentially
contribute to the decrease in hatchability following PFOA exposure. Further inves-
tigation may provide more evidence if and how PFAS exposure affects carbohydrate
levels.
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7.3.1.3 Effects on Other Metabolic Substances

In addition to the effects of PFAS exposure on the major metabolic substrates such
as fatty acids, cholesterol and carbohydrates, other compounds related to metabo-
lism may also be affected by PFAS exposure. Carnitine is an important endogenous
compound that facilitates fatty acid beta oxidation. Peng et al. (2013) demonstrated
that carnitine metabolism is disturbed by PFOA exposure in L-02 cells. Carnitine
concentration was decreased with PFOA exposure, while the other metabolic carni-
tine congeners, including acetyl camitine, propionyl carnitine, butyrylcarnitine and
valerylcarnitine, were all increased. The enzymes responsible for carnitine
metabolism, including CPT1A, CPT2, CACT and CRAT, were all increased as well.
Considering the important role of carnitine in fatty acid metabolism, the contribu-
tion of camnitine nterference could be important. However, the dose used in this
study was significantly higher than levels associated with human exposures.

Another target of PFAS is thyroid hormone, a major regulatory hormone of
metabolic function. PFAS are known to affect thyroid hormone signaling pathways,
which potentially contributes to the metabolic effects induced by PFAS exposure.
PFOS exposure (15 mg potassium PFOS/kg) in rats transiently increased tissue
availability of the thyroid hormones and the turmover of T4, thus reducing serum
TT4. However, PFOS did not induce a classical hypothyroid status (Chang et al.
2008, 2009).

Other than the direct change of metabolic substrate levels following PFAS expo-
sure, metabolic processes could also be affected by PFAS exposure. Bjork et al.
(2011) reported that in primary rodent hepatocytes, both PFOA and PFOS exposure
induced a substantial shift from carbohydrate metabolism (o fatty acid oxidation.
Hepatic triglyceride accumulation was also observed. The effect was more
pronounced for PFOA than PFOS. The metabolic shift induced by PFAS exposure
has multiple indications. It could directly impair energy production or affect oxygen
consumption, thus contributing to systemic toxicity; it might also induce generation
of reactive oxygen species and downstream cellular and tissue damage.

7.3.2 Indirect Metabolic Effects at Genetic Level

Aside from directly changing the levels of fatty acid, cholesterol and thyroid hor-
mones, PFAS can affect the expression levels of various genes associated with
metabolism. These effects are primarily mediated throngh PPAR«o agonism, but
PPAR« independent effects may also exist.

Following exposure of 0.5 mg/l. PFOS in zebrafish larva, various proteins
responsible for metabolism were affected. NDPK-Z2, UMP-CMP kinase, AK2,
Ckmb protein, CS, phosphoglycerate mutase 1 and OSBPI1A were all decreased
(Shi et al. 2009). These proteins are responsible for nucleic acid, carbohydrate, alco-
hol, and cholesterel metabolism. Guruge et al. (2006) also reported that PFOA
exposure induced expression level changes in multiple genes responsible for
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peroxisomal and mitochondrial fatty acid beta oxidation. The prominent genes
include acyl-CoA oxidase, enoyl CoA hydratase, carnitine palmitoyltransferases
and acetylCoA dehydrogenase. The increase in the level of expression of these
genes indicated that PFOA promotes fatty acid metabolism. Similar results were
obtained by other researchers, including Krgvel et al. (2008), whose study showed
that PFOS induced an elevation in PPARo and acyl CoA oxidase expression.

Peng et al. (2013) carried out an in vitro study with L-02 cells exposed to PFOA,
and found that multiple genes for metabolic pathways were affected, including
genes for lipid metabolism, carbohydrate metabolism, amino acid metabolism and
xenobiotic metabolism. In a zebrafish study by Hagenaars et al. (2013), PFOA was
found to interfere with mitochondrial membrane permeability and subsequent
impairment of aerobic ATP production. Depletion of liver glycogen and elevated
anaerobic metabolism gene expression were detected, potentially the result of
compensation for decreased aerobic metabolism. This study also confirmed that
the mitochondrial electron transport activity was decreased in PFOA-exposed
zebrafish livers. Lipid metabolism related genes were also found altered by PFOA
exposure. Common carp with PFOS exposure at 0.1-1 mg/L had alterations in gene
expression, including energy metabolism genes such as apoll, chymotrypsinogen
B1, ATPase2, protein phosphatase 1, glucokinase, cytochrome C oxidase, and
NADH dehydrogenase 1 beta subcomplex 1; all of these are involved in lipid trans-
port, protein metabolism, glycogen and glucose metabolism and electron transport
chain (Hagenaars et al. 2008).

In summary, PFAS exposure-induced alterations in metabolic gene expression
are important parts of PFAS-induced metabolic effects. These alterations in gene
expression could be the cause or result of changes at the levels of metabolic sub-
strates (fatty acids, carbohydrates, etc.).

7.3.3 Body Weight

In adult animals, body weight generally is decreased when high dose of PFAS are
applied. For example, Lefebvre et al. (2008) reported significant body weight
decreases following dietary PFOS exposure in adult SD rais. This body weight
reduction was considered as a mark of general toxicity, and only was observed at
doses higher than human exposure levels. Nonetheless, PFAS can affect body
weight via interference of signaling pathways at much lower doses. As mentioned
in Sect. 7.4.2.1.5, leptin levels are affected by PFOA exposure in animal models.
This effect seems to be more prominent in developing organisms than in adults, thus
will be discussed in details in the following subsection.
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7.3.4 Metabolic Effects in Development

Metabolic effects of PFASs are not limited to their effects on adult humans and
animals. Developmental toxicity is a point of concern for PFAS. Because metabolic
effects are one of the primary effects that PFAS induce, many studies actually
suggest that PFAS-induced developmental toxicity could partially contribute to
metabolic effects.

Generally, in atero exposure to PFAS will induce changes in gene expression
similar to that of adult exposures. Bjork et al. (2008) showed that in utero exposure
of PFOS in SD rats led to significant increases in hepatic peroxisomal proliferation
genes, along with fatty acid transport, oxidation, biosynthesis genes, and increase of
bile acid synthesis genes. LV et al. (2013) found that gestational and lactational
exposure to PFFOS induced elevated fasting serum insulin and leptin levels, impaired
glucose tolerance and hepatic steatosis and increased gonadal fat pad weight in
Wistar rats. Similar results were obtained after developmental exposure of PFOS to
CD1 mice. When F1 pups reached adulthood, insulin resistance and glucose intoler-
ance were observed (Wan et al. 2014). These types of metabolic effects were not
evident after adult exposures, but were detectable following developmental
exposures. Thus, the developmental metabolic effects of PFAS should receive
greater attention.

In summary, many investigations confirm PFAS-induced metabolic effects.
Metabolic substrates, including fatty acids, cholesterol and glycogen; other
metabolic-related compounds, including leptin, carnitine and thyroid hormone; and
genes related to metabolism have all been found to be affected by PFAS exposure.
Body weight and specific developmental metabolic effects were also found to be
significantly affected by PFAS exposure in vivo.

7.4 Human Data on the Metabholic Effects of PFAS

This section covers existing human data on the metabolic effects of PFAS. The
effects of PFAS on serum levels of lipids, uric acid and thyroid hormone are
discussed.

74.1 Effects on Serum Lipid Level

As mentioned in the previous section, decreases in PFAS levels are associated with
increased levels of lipids in animal studies (Iau et al. 2007). However, considerable
epidemiclogic evidence suggests a positive association of PFAS, particularly PFOA
and PFOS, with lipid levels in humans, which contradicts what would be deduced
from results of animal studies.
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As early as in 2000, Olsen et al. (2000) reported that PFOA exposure correlated
with increased cholesterol levels in an occupational cohort. However, the association
was not statistically significant. Similar results were obtained in another occupa-
tional study (Olsen et al. 2007) and a community study (Emmett et al. 2006b). In
contrast, nine studies including four occupational studies (Olsen et al. 2003; Sakr
et al. 2007a, b; Costa et al. 2009), two studies of a highly exposed community
(Frisbee et al. 2010; Steenland et al. 2009) and three general population studies in
adults, children and adolescents (Nelson et al. 2010; Geiger et al. 2014; Eriksen
et al. 2013), reported statistically significant correlations between plasma PFAS and
serum cholesterol levels.

Of the 12 studies, 10 studies in adults did not provide uniform findings on
whether PFAS exposure was involved in the development of elevated cholesterol
level whereas both cross-sectional studies that examined the association between
PFOA and PFOS exposure in relation to dyslipidemia in children and adolescents
reporied statistically significant results. The community-based study including
12,476 children in a Mid-Ohio river valley area conducted by Frisbee et al. (2010)
reported that total cholesterol demonstrated a consistent increase for each increase
in PFOA or PFOS quintile: a 4.6 mg/dL and 8.5 mg/dL increase in the covariable-
adjusted EMM of total cholesterol between first and fifth guintile of PFOA and
PFOS, respectively. A recent study (Geiger et al. 2014), which evaluated 877
adolescents between 12 and 18 years old, revealed exposure to PFOA and PFOS
was independently correlated with elevated serum total cholesterol levels at “back-
ground” exposure levels lower than seen in the average American population.

Nine out of the 12 studies were cross-sectional whereas 3 studies were
longitudinal. Sakr et al. (2007b) documented multiple measurements of PFOA and
cholesterol in 454 workers over an average of 10 years. Costa et al. (2009) reported
the health outcomes of 30 years (1978-2007) of medical surveillance of 53 male
workers (20-63 years) engaged in a PFOA production plant. Olsen et al. (2003}
reported the results of two measurements in 174 workers. All three of these studies
suggested a significant correlation between serum cholesterol and PFOA exposure.

Other than total cholesterol levels, the relationship of PFAS exposure with other
lipids, including high density lipoprotein (HDL), low density lipoprotein (LDL),
and triglyceride has also been investigated. Mounting evidence showed a positive
association of PFOA exposure with LDL (only the occupational study published in
2009 reported that increased PFOA levels had no association with LDL levels
(Costa et al. 2009)). In addition, a similar magnitude of association was found
between PFOS and LDL (Steenland et al. 2009; Frisbee et al. 2010; Nelson et al.
2010), which leads to the postulation that PFAS are associated with increased LDL
levels via a common mechanism. The positive associations between PFOA and
PFOS in serum and LDL cholesterol was further demonstrated in a recent published
longitudinal study that reported within-individual changes in serum PFOA and
PFOS and changes in serum lipid LDL over a 4.4-year period (Fitz-Simon et al.
2013). Compared to the relatively consistent positive relationship of PFOA and
PFOS with LDL, changes in the serum HDL level and triglycerides were not
consistently associated with PFOA and PFOS exposure. In occupational studies,
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different associations between PFOA exposure and HDI or triglyceride have been
reported. PFOA is associated with increased total and LDL but not HDL (Sakr et al.
2007a), increased total cholesterol but not triglycerides or HDL (Costa et al. 2009),
and increased triglycerides but not LDL (Olsen et al. 2007). The recent cross
sectional study in a general population of adolescents also reported non-significant
associations of PFOA and PFOS with abnormal HDL and triglycerides (Geiger
et al. 2014).

The mixed resulis from these studies make it difficult to draw conclusions on the
effect of PFAS exposure on serum lipids. In addition, the markedly varied strength
of the association of PFOA or PFOS and lipids makes it even more problematic to
interpret these results. Furthermore, it is still unknown whether peroxisome prolif-
eration, the mechanism of action identified in animal studies, plays a role in changes
of lipid levels i humans, given the discrepancy between human and animal studies
on the associations between PFAS and serum lipid levels. Therefore, additional
studies are needed to get the full picture on the effects of PFAS on serum lipids level
in humans.

74.2  Effect on Uric Acid Levels

Uric acid is a natural byproduct of purine metabolism. Elevated serum uric acid
levels have an underlying role in the pathophysiology of gout, and emerging studies
have showed that higher serum levels of uric acid are associated with dyslipidemia
(Lin et al. 2006), increased makers of inflammation (Mijatovic et al. 2011), and
insulin resistance (Facchini et al. 1991). Considerable epidemiologic evidence
suggests that increased uric acid is a risk factor for hypertension (Shankar et al.
2007), diabetes mellitus (Bandaru and Shankar 2011), chronic kidney disease (Cain
et al. 2010) and cardiovascular disease (Fang and Alderman 2000).

The positive associations between PFAS exposure and elevated serum uric acid
levels have been reported in four studies in adult populations highly exposed to
PFAS (Costa et al. 2009; Sakr et al. 2007a, b; Steenland et al. 2010a, b) and two
studies in the general population at lower “background” exposure levels of PFAS
(Geiger et al. 2013; Shankar et al. 2011). The highly exposed populations included
occupational cohorts of employees from PFAS-handling plants (Sakr et al. 20074,
b) and residents from the Ohio River Valley who were highly exposed to PFOA in
contaminated drinking water by a nearby chemical plant (Steenland et al. 2010a, b).
The general population studies have included both adult and child subjects (Geiger
et al. 2013; Shankar et al. 2011). All of these studies are cross-sectional except for
the one conducted by Costa et al. (2009). Serum PFOA and uric acid levels were
repeatedly measured over a 7-year period for longitudinal analysis in 56 workers
(Costa et al. 2009), which suggested a significant association between uric acid and
PFOA.

Positive associations were consistently found in all cross-sectional siudies,
although the overall strength of the association between PFAS and uric acid varies.
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In the study by Costa’s group (2009), the uric acid levels were 6.29 pg/ml for 34
currently PFOA exposed workers versus 5.73 pg/mi for 34 matched non-exposed
workers (P=0.04). In the cross sectional study by Steenland et al. (2010b), signifi-
cant association of both PFOA and PFOS with serum uric acid were found, although
PFOS showed a less pronounced trend. Recent studies (Shankar et al. 2011) in the
general population additionally demonstrated that the association of PFOA and
PFOS with increased serum uric acid was independent of age, sex, race and ethnic-
ity, body mass index, diabetes, hypertension, and serum cholesterol level (Geiger
et al. 2013).

7.4.3 Effect on Thyroid Function

Experimental evidence has shown that PFAS exposure impaired thyroid hormone
homeostasis by reducing T3 and T4 in rats and monkeys (Lau et al. 2007; Butenhoff
et al. 2002). In addition, in vifro modeling of human thyroid function showed PTAS
may be able to decrease thyroid hormone levels by competing with T4 for binding
to the human thyroid hormone transport protein transthyretin (TTR). Hence, a
number of studies have investigated the effect of PFAS exposure on clinical markers
of thyroid function. These studies include occupational studies (Olsen et al. 2003),
highly exposed community studies (Emmett et al. 2006a, b; Bloom et al. 2010) and
general population studies (Knox et al. 2011).

In an early occupational study (Olsen et al. 2003), PFOA or PFOS exposure was
found to have no association with T3, T4 or TSH. The longitudinal analysis of three
thyroid hormone measurements in 174 workers in the same occupational cohort
also suggested no association between thyroid hormone and PFOA. A later occupa-
tional study of 552 employees in three plants reported modest associations of PFOA
with T3 whereas no association with T4 or TSH (Olsen et al. 2007). Both community
studies (Bloom et al. 2010; Emmett et al. 2006b) found no significant association
between PFOA exposure and levels of TSH. The smaller one of these two studies
also found that the level of free thyroxine was not significantly associated with
PFAS (Bloom et al. 2010).

The correlations between thyroid disease and PFAS exposure have also been
explored. Pirali et al. (2009) reported no significant association of intrathyroidal
concentration of PFOA or PFOS with underlying thyroid disease when compared
with controls. However, contradictory results were reported in a study from National
Health and Nuirition Examination Survey (NHANES) data (Melzer et al. 2010),
which found higher concentrations of serum PFOA and PFOS were associated with
current thyroid disease in the U.S. general population.

Sex steroids modulate the homeostasis of thyroid hormone by affecting the
clearance of thyroid-binding globulin (TBG) synthesized in the liver (Tahboub and
Arafah 2009). Given that PFOA levels showed moderate gender differences with a
longer half-life in men (Steenland et al. 2010a, b) and PFOS had a significantly
inverse association with serum estradiol (Knox et al. 2011), it is an important issue
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to address the gender difference in thyroid function in response to PFAS exposures.
In the cross-sectional report, which was stratified by gender, it was found that both
PFOA and PFOS levels had a significant association with thyroid disease in females
whereas much less precise association was only found between PFOS and thyroid
disease in males (Melzer et al. 2010).

Overall, a conclusion could not be drawn from the current available evidence due
to the small sample size and self-reported system of data collection. More evidence
is needed to clarify the mechanisms involved and provide solid interpretation
regarding the role of PFAS in modulating thyroid hormones in humans.

7.5 Organ-Specific Metabolic Effects

In previous sections of this chapter, PEAS-induced metabolic effects were discussed
at the systemic level. This subsection will specifically discuss organ-specific
metabolic effects. The major organ systems to be covered include cardiovascular,
skeletal muscle, liver, central nervous system and reproductive syster.

7.5.1 Cardiovascular System

The cardiovascular system is one of the most important organ systems in a living
organism and it is vulnerable to the metabolic effects of PFASs, mainly due to
several characteristics: if is dependent on fatty acid metabolism; circulating fatty
acids and cholesterol may have detrimental effects on cardiovascular tissue; and it
is influenced by thyroid hormone.

Mature myocardium depends on fatty acid metabolism as the main energy
source. To be more specific, fatty acid beta-oxidation is the major energy-production
pathway in the heart; PPARo is expressed in the heart and regulates fatty acid
metabolism (Barger and Kelly 2000). As described in other chapters, and in previ-
ous sections of this chapter, PFAS have the ability to interfere with the PPAR« sig-
naling pathway. As a result, the cardiovascular system could be affected by PFAS
exposures due to metabolic disturbances of fatty acid metabolism. As PFOA has
been associated with cardiovascular disease and peripheral arterial disease (Shankar
et al. 2012), PFAS exposures could induce cardiovascular disturbances.

Thyroid hormone is imporiant in metabolic regulation, energy expenditure and
blood pressure regulation. The cardiovascular system is regulated by various neuro-
hormonal factors including thyroid hormone. Since PFAS are known to interfere
with thyroid hormone, it is possible that the cardiovascular system is affected
secondary to the interference of the thyroid hormone signaling pathway. In a study
by Curran et al. (2008), serum thyroid hormone levels were decreased in PFOS-
treated rats, however, no apparent cardiovascular changes were observed. The lack
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of significant cardiovascular changes suggests lack of direct cardiovascular effects
associated with PFAS exposure.

Both experimental animal and human data indicate that PFAS exposures are
associated with cardiotoxicity. In a stady with chicken hatchlings, Jiang et al. (2012)
demonstrated that developing chicken hearts were affected, with altered morphol-
ogy and function, following developmental exposure to PFOA starting at a dose of
0.5 mg/kg, An additional study associated these changes with PPAR« and BMP2
signaling pathways (Jiang et al. 2013). For human studies, it is more difficult to
draw clear conclusions as several studies report opposite findings. As discussed
previously, Shankar et al. (2012) demonstrated increased cardiovascular risk associ-
ated with PFAS exposure. However, Steenland et al. (2010a) indicated no clear
association was established between PFAS exposure and cardiovascular risk.
Therefore, additional investigations are needed to establish if PFAS exposure
increases cardiotoxicity and the risk of cardiovascular disease.

7.5.2 Skeletal Muscle

Skeletal muscle guides most voluntary mechanic movements throughout the body,
which expends a large amount of energy. The energy resources include glycogen
and fatty acid. Thus, skeletal muscle, as a result of its dependence on energy
resources, is a potential target of PFAS-induced metabolic effects. Moreover, skel-
etal muscle also plays important roles in metabolic regulation. For example, skeletal
muscle dysfunction has significant impacts on insulin resistance.

Glycogen, a main energy resource for skeletal muscle function, is generated
from metabolism of carbohydrates. PFAS are known to induce detrimental effects
on glycogen metabolism, mainly glycogen deposition, hence affecting muscle func-
tion and metabolic homeostasis (Hagenaars et al. 2013; @rtenblad et al. 2013). In
certain circumstances, this effect could have severe outcomes. For example, in the
late stage of chicken embryo development, the deposition of glycogen in hatching
muscle is critical for successful hatching (Pulikanti et al. 2010). Exposure to PTAS
has been reported to affect the homeostasis of glycogen deposition process
(Hagenaars et al. 2013), thus the developmental toxicity of PFAS in egg laying
organisms are potentially attributed to disrupted glycogen deposition.

Fatty acid metabolism is important especially in prolonged skeletal muscle work.
PPAR«o expression levels are high in skeletal muscle, thus the disruption of PPARo
signaling in skeletal muscle and downstream fatty acid beta-oxidation interruption
are potential targets for PFAS. However, the evidence of the effect of PFAS expo-
sure on fatty acids was largely limited to liver fatty acid metabolism. More studies
are needed to examine the localized effect of PFAS on skeletal muscle fatty acid
metabolism.
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7.5.3 Liver

Liver is the primary organ of endogenous and exogenous substance metabolism.
Carbohydrates, fatty acids and protein are all processed mainly in the liver, making
it the major organ for metabolism of these substances. Due to the high level of
PPARo expression in the liver, PFAS exposure may lead to profound
hepatotoxicity.

PFAS are widely known to induce hepatomegaly and overexpression of fatty acid
beta-oxidation-related genes both in vifro and in experimental animal models. For
example, hepatomegaly has been observed following PFOA and PFOS exposure in
SD rats (Cui et al. 2009). Kudo et al. (2006) also reported induction of hepatomeg-
aly and peroxisomal beta-oxidation in rats. Carcinogenesis generally occurs follow-
ing long-term and relatively large doses of PFAS, and is generally considered not
applicable to humans (Post et al. 2012). However, the potential for carcinogenicity
in liver should not be under-looked when evaluating potential health risks to humans.

Fatty acid metabolism is the major metabolic pathway being affected by PTAS
exposure, raising the concern of fat deposition in the liver (fatty liver), as observed
in Kudo and Kawashima (1997) and Tan et al. (2013). However, considering the
doses of PFAS used in these studies (up to 10 mg/ke in Std:ddY mice in Kudo and
Kawashima and up to 5 mg/kg in C57BL/6N mice in Tan et al.), it is highly unlikely
that PFAS is a major risk associated with fatty acid metabolic effects in the liver of
humans at current exposure levels.

In humans, hepatotoxicity is generally less prominent, mainly being detected as
elevated cholesterol levels (discussed in previous sections) and an increase in bio-
markers of liver damage. For example, Gallo et al. (2012) reported elevation of ALT
following PFOS and PFOA exposure in an exposed population in West-Virginia and
Ohio (the C8 project population). Frisbee et al. (2010) also reported that an increase
in cholesterol levels were associated with higher circulating PFAS levels. This study
suggested that metabolic effects of PFAS are not simply activation of PPAR« and
increased beta oxidation, as the latter should decrease cholesterol levels instead of
increase, as demonstrated by these epidemiologic studies.

7.5.4 Reproductive System

To our knowledge, reproductive effects of PFAS exposure mainly impacts sex
hormones. Experimental animal studies have demonstrated the association between
PFOA exposure with increased estradiol levels and decreased testosterone levels
(Lau et al. 2007). Three cross sectional occupational studies also investigated the
relationship between hormones and serum levels of PFOA (Sakr et al. 2007a; Costa
et al. 2009; Olsen et al. 1998). An early study by Olsen et al. (1998) reported results
in male workers only. In this study, esiradiol, 17-hydroxyprogesterone, prolactin
and bound testosterone were measured and no significant association was found
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between PFOA exposure and these hormones. However, the power of the study had
been compromised by the fact that most of the population was in the two lowest
exposure groups (<1 and <10 ng/ml) with only five subjects in the highest exposure
group (>30 ng/ml). Sakr et al. (2007a) reported a sex-related association between
PFOA exposure and sex hormones. In male subjects, a significant association of
serum PFOA levels with both estradiol and testosterone was found. In contrast, no
significant correlation was found for hormones in the 243 female subjects. Costa
et al. (2009) reported the data of 56 workers in routine occupational surveillance, in
which no association between serum PFOA and sex hormones (estradiol and testos-
terone) was observed. As far as PFOS is concerned, a significant inverse association
between PI'OS and serum estradiol was found in women age from 42 to 65 years old
(Knox et al. 2011). Given the moderate sex difference in median PFOA levels
(Steenland et al. 2009) and the significantly longer half life of PFOA in male rats,
more studies with consideration of sex difference is needed to address the effects of
PFAS exposure on sex hormones.
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Chapter 8
Developmental Toxicity

Barbara D. Abbott

Abstract This chapter provides an overview of the developmental toxicity resulting
from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of
PFAA-induced developmental toxicity have examined effects of perfluorooctane
sulfonate (PFOS) or perfluorooctanoic acid (PFOA) and there is only limited
information available for other members of this family of chemicals. In this chapter,
there are separate overviews of the developmental toxicity of PFOS and
PFOA, along with a summary of studies available for perfluorobutyrate (PFBA),
perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perflu-
orononanoate (PFNA). In general, among the PFA As that do produce developmen-
tal toxicity in one or more laboratory species, prenatal PFAA exposure in teratology
studies typically does not result in major malformations and significant findings are
often limited to the higher exposure levels. The postnatal effects in rats or mice
exposed to PFAAs are typically increased mortality in the first hours or week after
birth, effects on weight which may persist beyond weaning, delayed eye opening,
abnormal mammary gland development, and liver hypertrophy. The role of peroxi-
some proliferator activated receptor-alpha (PPAR«) in mediating developmental
effects is discussed, including insights from genetically modified mice, PPARq
knockout mice, and mice expressing the human PPAR«a gene. Pharmacokinetic
issues are relevant to selecting an appropriate animal model for developmental stud-
ies and regarding the influence of rapid clearance on manifestation of developmen-
tal toxicity. Whether or not a particular PFAA will cause developmental toxicity
depends on levels and timing of fetal exposure and is influenced by species and
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gender specific pharmacokinetic characteristics that impact exposure of the
conceptus throughout gestation and during the lactational period. Factors influenc-
ing the pharmacokinetics and developmental outcomes include chemical character-
istics of a particular PFA A (carbon chain length, functional moiety — carboxylate or
sulfonate), species specific characteristics (sex and species specific expression of
particular transporters in the kidney that influence clearance), timing and level of
exposure to the developing fetus, and ability of the PFA A to activate PPAR o (human,
mouse, and rat PPARo differ in responses to PFAA, carboxylates are more effective
than sulfonates, and longer carbon chain PFAA are more potent than short chain
PFAA). The expression and activation of PPARa is necessary for mediating devel-
opmental effects of PFOA and PENA, but the early postnatal deaths caused by expo-
sure to PFOS were not dependent on expression of PPARo.

Keywords Developmental toxicity  Teratology * Peroxisome proliferator activated
receptor (PPAR) ¢ Postnatal toxicity

8.1 Imntroduction

The developmental toxicity of perfluorinated alkyl acids (PFA As) has been evalu-
ated in several species, including fish, rats, mice, monkeys, and humans. The major-
ity of the studies that evaluated the developmental effects of PFAAs focused on
perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PTFOA), although
there are studies for a few of the other perfluorinated compounds, such as perfluo-
rononanoate (PFNA), perfluorodecanoate (PFDA), perfluorobutyrate (PFBA), per-
fluorobutane sulfonate (PFBS), and perfluorohexane sulfonate (PFHxS). A
comprehensive review of the developmental toxicity of the PFAAs was published
by Lau et al. (2004), and subsequently updated (Lau et al. 2007). Subsequent to the
Society of Toxicology Contemporary Concepts in Toxicology Symposium
“Perfluoroalkyl Acids and Related Chemistries: Toxicokinetics and Modes-of-
Action Workshop”, held in 2007, a report was published summarizing new informa-
tion from presentations at that meeting, including developmental toxicity and
potential roles of nuclear receptors in producing PFAA toxicity (Andersen et al.
2008). These reviews (Andersen et al. 2008; Lau et al. 2004, 2007), provide a thor-
ough overview of what was known at that time regarding developmental toxicity of
the perfluorinated compounds. This chapter integrates that information and pro-
vides a current overview of the developmental toxicity of PFOS and PFOA, fol-
lowed by a summary of the available reports of developmental toxicity for other
PFAAs. The role of the peroxisome proliferator activated receptor-alpha, (PPARo)
in mediating PFAA-induced developmental toxicity is discussed, including the
insights provided by use of genetically modified mice, both PPARa-null mice and
mice expressing the human PPAR«x gene.
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8.2 PFOS and N-Ethylperfluoroocatnesulfonamido)
Ethyl Alcohol (N-EtFOSE)

Teratology studies, two-generation reproductive studies, and cross-foster studies
have been conducted using PFOS and N-EtFOSE (Case et al. 2001; Christian et al.
1999a, b; Lau et al. 2003; Thibodeaux et al. 2003). In these studies, using rat, rabbit
and mouse, there were typically few teratological findings, and these were generally
only seen at higher doses. N-EtI’'OSE is metabolized and degrades in the environ-
ment to PFOS and generally gives results in these studies that are similar to
PFOS. Case et al. (2001) conducted developmental toxicity studies of both PFOS
and N-EtFOSE in rat and rabbit, using doses ranging from 1 to 20 mg/kg/day (rat,
N-EtFOSE) and 0.1-3.75 mg/kg/day (rabbit, both compounds). At the highest
doses, maternal toxicity (reduced feed consumption and body weight) was associ-
ated with increased abortions in rabbits (both compounds), increased late resporp-
tions in rabbits (N-EtFOSE), and reduced fetal weights in rats (N-E(FOSE) and
rabbits (PFOS). External, soft tissue, and skeletal fetal examinations did not reveal
any malformations in either species. These findings were generally supported by a
study of PFOS in mice and rats (Thibodeaux et al. 2003), in which malformations
were reported only at the highest doses in both species. In that study, Sprague-
Dawley rats were dosed orally at 1-10 mg/kg/day from gestation day (GD) 2-20 and
CD-1 mice were dosed at 1-20 mg/kg/day from GD1-17, and serum and liver levels
of PFOS increased with dose. Maternal weight gains were reduced in both rat and
mouse, and small effects on fetal weight were noted in the rat. This study also
reported increased liver weight in mouse dams, and effects on thyroid in the rat and
mouse dams with reduced thyroxine (T,) and triiodothyronine (T;) with no change
in thyroid-stimulating hormone (TSH). At the highest doses in rat and mouse,
delayed ossification and edema were reported, along with several malformations
including cleft palate and cardiac abnormalities (ventricular septal defect, and
enlarged right atrium). The potential for PFOS to cause cleft palate was examined
further using ICR mice dosed from GD1-17 and using palatal organ culture (Era
et al. 2009). The incidence of cleft palate correlated with modest increases in PFOS
in fetal serum, as doses to the dam increased from 13 to 20 mg/kg/day. Cleft palate
induction was attributed to effects of PFOS that prevented elevation of palatal
shelves above the tongue during palatogenesis.

Thibodeaux et al.’s (2003) paper was accompanied by a companion paper in
which the postnatal effects of PFOS exposure were reported (Lau et al. 2003). Dams
were exposed to PFOS using the same dosing regimen (described in the companion
paper) and allowed to give birth. Pups were born alive, but those from dams in the
highest dose groups (rats and mice) became pale, inactive, moribund, and died
within hours of birth. Pups from the dams dosed at lower levels of PFOS (rats dosed
at 5 mg/kg/day and mice dosed at 15 mg/kg/day), survived longer but over 95 % of
those pups died within the first 24 h, and about half of offspring died from dams
dosed at 3 mg/kg/day (rat) and 10 mg/kg/day (mouse). Cross-fostering the pups
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exposed in utero to control dams at birth failed to change the outcomes. Among
surviving pups, delayed eye opening, persistent lags in growth, and increased liver
weight were noted. Serum T; and T, were decreased in the surviving rat pups,
although TSH was not affected. An earlier two-generation reproductive study of
N-EtFOSE in rats also reported reduced pup survival in the first 3 days of life and
weight gain deficits among survivors (Christian et al. 1999a). The dramatic effects
on postnatal survival were further supported by a reproductive study in rats (Luebker
et al. 2005a), in which male and female rats were dosed orally with PFOS
(0.1-3.2 mg/kg/day) across two generations (both sexes prior to mating, during
mating, and females through gestation and lactation). PFOS exposure reduced body
weight and feed consumption in both sexes of the parental generation (F,) at 0.4 mg/
kg/day and higher, and at the two higher doses there was substantial neonatal toxic-
ity. There were no effects on reproductive performance, and no effects of PFOS
were found on embryos examined on GD10. At the high dose, the length of gesta-
tion was decreased, the number of implantation sites was decreased, and there were
increased numbers of stillborn pups and pups dying postnatally. The increased F,
pup lethality, developmental delays, and decreased body weight gain were noted
after a maternal dose of 1.6 mg/kg/day. A cross-foster study indicated that in utero
exposure contributed to the postnatal pup mortality and that the combination of
both pre- and postnatal exposure produced greater responses than either exposure
period alone. Luebker et al. (2005b) followed up on these observations with a study
designed to define the dose-response and evaluate pharmacokinetic and biochemi-
cal parameters, including measurement of serum lipids, glucose, mevalonic acid,
thyroid hormones, milk cholesterol, liver lipids, pharmacokinetic parameters
(serum and liver levels). Dams were dosed 6 weeks prior to mating through postna-
tal day (PND) 4 with doses ranging from 0.4 to 2.0 mg PFOS/kg/day. Gestation
length and viability were decreased at 0.8 mg/kg/day and higher, but this was not
correlated with effects on the biochemical measures. Transfer of PFOS from the
dam to the fetus was confirmed and levels in the fetus correlated with postnatal
lethality.

The reports of postnatal lethality after in utero exposure to PFOS were interest-
ing, but an explanation for how this could be happening required studies that would
focus on the symptoms exhibited soon after birth in those pups exposed to the higher
doses of PFOS. Lau et al. (2003) and Thibodeaux et al. (2003) reported that pups
became pale and inactive, and in a subsequent study, Grasty et al. (2003) further
defined the prenatal window of susceptibility, reporting that the pup mortality could
be produced solely by an exposure late in gestation. In that study, Sprague-Dawley
rats were dosed orally with 25 mg/kg/day for four consecutive days across different
gestational ranges of days, or at 25 or 50 mg/kg/day only on GD19-20. After 4 days
of dosing, reduced maternal weight gain, food and water consumption, and pup
weights were observed. Pup survival was reduced in all PFOS-exposed groups, and
late gestational exposure (GD19-20 with exposure to 25 or 50 mg PFOS/kg/day)
was sufficient to reduce survival to only 3 % of pups by PND5. Lung maturation is
a key event during the late stages of gestation, and interference with lung develop-
ment could impact functionality and subsequent survival. Grasty et al. 2003 study
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revealed effects of prenatal PFOS exposure on the morphology of the fetal and
neonatal lung. Based on histological differences and reduced expansion of the lungs
(at necropsy, fetal or neonatal lungs were perfused via the trachea with formalin and
the degree of expansion was noted to be less in PFOS-exposed offspring), it was
proposed that effects on lung maturation or function of surfactant were involved in
the neonatal deaths.

The hypothesis that effects on the lung were involved in postnatal mortality is
consistent with observations of the distribution of PFOS in dams, fetuses, and pups
in a study wsing whole-body autoradiography and liquid scintillation counting to
localize and quantify the distribution of PFOS (Borg et al. 2010). C57BY/6 mouse
dams were injected on GD16 with **S-PFOS, 12.5 mg/kg, and distribution of PFOS
was determined on GD 18, GD20 and PND1. At GD18, PFOS levels were two to
three times higher in fetal lungs, liver, and kidneys than in maternal blood, and by
PND1 levels in neonatal lungs were much higher than in the GD18 fetuses. This
evidence of distribution in substantial levels to fetal and neonatal lung, supports a
proposed role for effects on that organ in the early mortality observed after birth.
Further studies of effects of PFOS on lung maturation in the rat (Grasty et al. 2003),
described increased thickness of the alveolar walls in the PFOS-exposed neonates
(Sprague-Dawley rats exposed to 25 or 50 mg/kg/day on GD19-20) and the ratio of
tissue to airway space increased. This was interpreted to indicate immaturity of the
exposed lungs, with potential failure of alveoli to inflate properly with the onset of
respiration at birth, potentially indicating interference with surfactant, which is
essential for proper dilation of the alveoli. However, the study did not detect any
effects of PFFOS on surfactant phospholipid concentrations or molecular speciation,
and analysis of gene expression related to alveolar differentiation revealed no differ-
ences from controls. It was further speculated that the surfactant properties of PFOS
itself were interfering with surfactant function and this is supported by other evi-
dence that PFOS and PFOA have the potential to interact with surfactant, based on
interactions with dipalmitoylphosphatidylcholine (DPPC), one of the major compo-
nents in surfactant, and the abilities of PFOS and PFOA at low concentrations to
migrate from water into DPPC monolayers and bilayers changing fluidity and phase
transitions (Gordon et al. 2007; Lehmler et al. 2006; Matyszewska et al. 2007; Xie
et al. 2007a). The potential for PFOS to affect lung development was supported by
a later study in ICR mice, dosed orally at 0.1-2 mg/kg/day from GD0-18, in which
pups died within 24 h and abnormal lung histology was described as “atelectasis-
like” (collapsed Iung), (Yahia et al. 2008). This study also reported dilated intracra-
nial blood vessels. Similarly, in Sprague-Dawley rats dosed orally with PFOS at 0.1
or 2 mg/kg/day from GD1-21, the lungs of the offspring at the high dose were
reported to have severe histolopathological changes, oxidative injuries, and cell
apoptosis, accompanied by altered expression of genes related to oxidative stress
and cell death (Chen et al. 2012). Although additional studies are needed to clarify
the mode of action for PFOS-induced developmental toxicity, the evidence supports
a mechanism affecting lung function to explain the early deaths among newborn
rodents exposed to PFOS during gestation (The potential role of PPAR« is dis-
cussed in a separate section below).
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8.3 PFOA

The developmental toxicity of PFOA has been extensively studied in multiple spe-
cies, including monkeys, mice, fish, rats, rabbits, and humans (via epidemiological
studies), and more information regarding these studies can be found in the reviews
mentioned earlier (Andersen et al. 2008; Lau et al. 2004, 2007). The study of the
developmental toxicity of PFOA has been complicated by the finding of sex and
species differences in pharmacokinetics which results in major differences in time
required to eliminate PFOA. Sex and species differences in elimination of PFOA are
covered in detail in Chap. 6 (the chapter of this book dealing with pharmacokinet-
ics), however, in order to discuss the developmental toxicity of PFOA and the most
appropriate animal model for such studies, it is necessary to mention these issues.
Briefly, the handling of PFOA by transporters in the kidney is of particular impor-
tance for explaining sex and species differences in elimination. The organic anion
transporters (Oat) in the kidney move the perfluorinated carboxylates across mem-
branes and are key players in renal elimination. There are multiple transporters
involved and the specific sex and species dependent expression and the timing of
acquisition of expression in the young animal are relevant to explaining differences
in PFOA elimination (Buist et al. 2002; Buist and Klaassen 2004; Weaver et al.
2010). The half-life of PFOA elimination is estimated to be 3.8 years in humans
with little difference between genders; in the rat, the half-life for elimination is
4-6 days in the male, but only 2-4 h in the female (Lau 2012). Of particular rele-
vance to studies of developmental toxicity, the female rat eliminates PFOA very
rapidly and the exposure of the conceptus is likely to be limited, making it less
likely that developmental toxicity will be observed. The rabbit also exhibits a short
half-life of elimination for PFOA, 7 h in the female and 5.5 h in the male, (Hundley
et al. 2006). Mice present an appropriate model for studies of developmental effects
of PFOA, as, similar to the case in humans, there is little difference between sexes
in half-life of elimination. The half-life of PFOA in mice is 17 days in the female
and 19 days in the male. With a gestational period in mice of approximately
20-21 days, it is likely that daily dosing during gestation will achieve continuous
exposures throughout development and into the lactational period. Thus the mouse
presents a gestational exposure model that would be similar to that expected in the
human where the half-life of elimination is in years.

Considering the short half-life of PFOA in female rats and rabbits, it is not sur-
prising that the carly teratology studies in those species did not report any signifi-
cant findings (Gortner 1982; Staples et al. 1984). A two-generation reproductive
study of PFOA in the Sprague-Dawley rat with oral exposures of 1, 3, 10, or 30 mg/
kg/day and beginning dosing of the parental generation at about 6 weeks prior to
mating, showed few significant effects. There was decreased body weight and
increased liver and kidney weight in males of the parental and I, generation at all
exposures. High dose I, pups had decreased body weight at birth and preputial
separation and vaginal opening were delayed, but there were no effects on later
reproductive performance. No adverse effects for F, (mortality, weight, sexual
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maturation) were observed at 10 mg/kg or below. At the 30 mg/kg level, mortality
was observed in the I, pups after weaning and there was delay in achieving sexual
maturity (males and females). The findings in the I, generation were
unremarkable.

Study of developmental toxicity of PFOA in the mouse model gave a profile of
effects that was reminiscent of outcomes observed following PFOS exposure in rats
or mice. CD-1 mice dosed orally with PFOA at 1, 3, 5, 10, 20, or 40 mg/kg/day on
GD1-17 revealed full-litter resorption at the high dose, effects on dam weight gain
during pregnancy at the 20 mg/kg dose, and enlarged liver in the dams at all doses
(Lau et al. 2006). Some dams were necropsied at GD18 and the remainder were
allowed to give birth for postnatal observations. Among the GD18 dams, the percent
of live fetuses and fetal weights was lower in the 20 mg/kg group, some structural
abnormalities were seen in the fetuses, but no increase in malformations was found
in any of the dose groups lower than 20 mg/kg. In the postnatal study, the incidence
of live births and pup survival were lower in both the 10 and 20 mg/kg groups and
survival was also decreased in the 5 mg/kg group. Growth deficits occurred in all but
the 1 mg/kg group and delays in eye opening at 5 mg/kg or higher were observed.
In a follow-up study from this laboratory, cross-foster experiments exposed the
timed-pregnant CD-1 mouse to PFOA on GD1-17 at 0, 3, or 5 mg/kg/day (Wolf
et al. 2007). At birth, pups were cross-fostered to create sets of pups that were
exposed in utero only, lactationally only, both in utero and lactationally, or not
exposed in either developmental period. Among the PFOA-treated dams, relative
liver weight increased, but weight gain in pregnancy and litter size were unaffected.
In utero exposure alone at 5 mg/kg group (no lactational exposure) was sufficient to
produce the postnatal body weight deficit and delay in eye opening, but only the
pups exposed to 5 mg/kg/day both in utero and lactationally had significantly
reduced pup survival from birth to weaning. The study also included restricted win-
dows of exposure from GD7-17, 10-17, or 13-17 at 5 mg/kg/day, or from GD15-17
at 20 mg/kg/day. Similar to the findings from the PFOS window-of-exposure stud-
ies, PFOA exposure late in gestation at a high level (GD15-17, 20 mg/kg) was suf-
ficient to produce reduced survival at birth and reduced birth weight. The GD7-17
and 10-17 exposure at 5 mg/kg/day also reduced pup weight gain, and delayed eye
opening and hair growth. The cross-foster and window of exposure studies indi-
cated that, in a dose-related manner, exposure in utero was sufficient to produce
developmental toxicity, that gestational and lactational exposure both contribute to
the adverse effects, and that late gestational exposure was sufficient to affect
survival.

Cross-foster and window-of-exposure studies in CD-1 mice, similar in design to
those described for the developmental toxicity studies above, were conducted to
evaluate effects of PFOA on mammary gland development. White et al. (2007)
dosed CD-1 mice on GD1-17, 8-17, 12-17, at 0 or 5 mg/kg/day and examined mam-
mary glands of dams and female pups at PND10 and 20. PFOA reduced body
weights at birth that persisted until weaning. Effects on differentiation of the dam’s
mammary glands in the GD1-17 and 8-17 exposure groups were found on PND10,
and on PND20 delays in epithelial involution and altered milk protein gene
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expression were noted. All of the female pups exposed to PFOA in utero showed
significantly delayed mammary epithelial branching and delayed mammary growth
at both PND10 and 20. In a cross-foster study in which dams were dosed at 5 mg/
kg/day on GD1-17 (White et al. 2009), both in utero only and lactational only expo-
sures produced delays in mammary gland development detectable as early as PND1
and morphological effects that persisted beyond PND63. Exposures late in gestation
on GD15-17 produced mammary gland effects similar to those observed after expo-
sures occurring throughout gestation. As these studies did not identify a no-effect
level for mammary gland outcomes, further studies examined exposures to lower
levels of PFOA (Macon et al. 2011; White et al. 2011). CD-1 mice dosed orally
from GD1-17 or 10-17 were treated with 0, 0.3, 1.0, 3.0 mg/kg/day or 0, 0.01, 0.1,
or 1.0 mg/kg/day, respectively. Relative liver weights increased in all groups in off-
spring of the GD1-17 exposure and at 1.0 mg/kg in the GD10-17 exposure group.
Mammary epithelial stunting was observed in all of the groups from both exposure
paradigms. The results in the GD10-17 exposure group showed effects on mam-
mary development at doses which did not affect liver weight. The mammary gland
effects in the GD1-17 group persisted to 12 weeks of age, and again it was not pos-
sible to identify a no-effect level. In a transgenerational study (White et al. 2011),
pregnant CD-1 mice were dosed during gestation (0 or 1.0 mg/kg/day on GD1-17)
and their F| and I, offspring were exposed chronically via drinking water at 5 ppb.
The F, offspring were bred to produce F, which were observed from PND1-63.
Mammary glands of parental, I', and I, females were examined throughout the
study. Gestational exposure induced delayed mammary gland development and
chronic, low-dose exposure in drinking water also altered mammary gland mor-
phology. It should be noted, that in this animal model, the morphological effects on
the F1 female’s mammary glands did not impair nutritional support of offspring as
there was no effect on growth of the pups of these females, suggesting that lacta-
tional nutrition was adequate. These studies identified mammary gland as a devel-
oping system that is highly sensitive to PFOA exposure, demonstrating
responsiveness at exposures below those required to affect liver weight changes,
and further showed that there was not substantive recovery as these morphological
effects persisted to later life stages.

8.4 Peroxisome Proliferator-Activated Receptor
Alpha (PPAR)

The perfluorinated compounds are known activators of peroxisome proliferation
and this effect is well characterized in the liver. The induction of peroxisomes in
response to PFAA exposures is a direct response to activation of the PPAR« recep-
tor. Activation of PPAR«x by PFOA is considered a key event in the mode-of-action
of PFOA-induced liver tumors in the rat (Kennedy et al. 2004; Klaunig et al. 2003).
The PPARa pathway is also an important regulator of lipid and glucose homeosta-
sis, regulating inflammation, cell proliferation and differentiation (Escher and Wahli
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2000). Since PFOA was known to act through PPAR« to produce effects in the liver,
it was relevant to determine the role of the pathway in PFA A-induced developmen-
tal toxicity. PPARa knockout (KO) mice (transgenic mice on the 12954/SvJae back-
ground were genetically altered to no longer express PPAR«) and wild type (WT)
mice (on the genetically similar 12951/SvimJ background) were used to test the
involvement of the PPAR«a pathway after exposure to PFOA, PFOS, and PFNA
(Abbott et al. 2007, 2009; Wolf et al. 2010).

Pregnant WT and KO mice were dosed orally with PFOA on GD1-17 at 0, 0.1,
0.3, 0.6, 1, 3, 5, 10, or 20 mg/kg/day. In WT and KO mice, PFOA at 5 mg/kg and
above resulted in full-litter resorptions in all dams, suggesting that these strains of
mice were more sensitive than the CD-1 mice (which did not have full-litter resorp-
tions at 5 mg/kg/day), and that a PPARo-independent mechanism was responsible
for the early loss of the embryos at high doses. However, PPARa was required for
PFOA to produce postnatal lethality (Abbott et al. 2007), as WT litters exposed to
0.6 or 1 mg/kg/day had only 43 % of pups survived to weaning, whereas survival in
KO litters was unaffected at up to 3 mg/kg/day. Pups heterozygous for PPARa
expression that were born to either WT or KO dams experienced increased inci-
dences of postnatal mortality after PFOA exposure in utero. Thus, maternal factors,
such as background genetics or potential effects of PPARa KO on the dam, were not
involved and expression of only one copy of the PPAR« gene was sufficient to make
pups susceptible to PFOA-induced postatal mortality. Delays in eye opening and
reduced postnatal pup weight also occurred in WT PFOA-exposed litters and these
effects also appeared to depend on PPAR« expression. However, it is possible that
other factors contribute to these outcomes, as there was a slight effect on these end-
points in the KO at 3 mg/kg.

Developmental toxicity after exposure to PPNA was also examined in the WT
and PPARa KO mice using the approach described above for PFOA (Wolf et al.
2010). WT and KO mice were dosed orally with PFNA on GD1-18 at 0.83, 1.1, 1.5,
or 2 mg/ke/day. In WT litters, PFNA reduced the number of live pups at birth and
decreased survival to weaning in the 1.1 and 2 mg/kg groups. Delayed eye opening
and decreased pup weights were also seen at 2 mg/kg. KO litters did not have
reduced survival or effects on pup weight or developmental delay. It was clear that,
as with PFOA, the developmental toxicity of PFNA was mediated by activation of
PPAR« and in the absence of expression of that receptor there was no effect on
survival, pup weight, or eye opening.

This was not the case for the developmental toxicity induced by PFOS. Exposure
to PFOS in utero resulted in neonatal deaths in both the WT and KO litters. The
protocol for testing PFOS in the WT and KO differed from that described for PFOA
and PFNA, as the fetuses were only exposed later in gestation and postnatal survival
was monitored from PND1-15. As it was previously shown that PFOS could induce
excessive postnatal mortality with exposures only in the latter stages of develop-
ment in rats, the WT and KO mice were dosed orally with PFOS from GD15-18 at
0,4.5, 6.5, 8.5, or 10.5 mg/kg/day (WT) or 0, 8.5, or 10.5 mg/kg/day (PPARa KO).
Survival was decreased in both WT (4.5, 8.5, and 10.5 mg/kg/day) and KO (8.5 and
10.5 mg/kg/day) litters and eye opening was delayed in the 8.5 mg/kg WT group

ED_002974_00000598-00220



212 B.D. Abbott

and the 10.5 mg/kg KO group. The effects in the WT may have been more
pronounced compared to KO; among WT litters exposed to 10.5 mg/kg/day only
26 % of the pups were alive on PND135, but 62 % survived to PND15 in the KO lit-
ters exposed at this dose. The effects of PFFOS on survival in the KO litters indicated
that expression of PPARa was not required to mediate this response. This strongly
suggests that the mechanism leading to early postnatal deaths after exposure to
PFOS differs from that occurring after exposure to either PFOA or PFNA and may
indeed involve effects of PFOS on the function of surfactant in the lung of the neo-
nate. Although both PFOA and PFOS are surfactants with the ability to partition
into DPPC layers (as mentioned in the PFOS discussion), experimental evidence
suggests that PFOS is more likely to be disruptive, with a partition coefficient about
four times that of PFOA (Matyszewska et al. 2007; Xie et al. 2007b). The linkage
between distribution of PFOS to the fetal/neonatal lung and the potential for PFOS
to interfere with surfactant function are the current explanations for the induction of
lethality that is independent of PPAR« expression.

The studies in the PPAR« KO mice are clear in demonstrating that for PFOA and
PFNA the postnatal developmental toxicity is mediated via activation of the PPAR«
pathway. This is further supported by studies showing that PPAR receptors are
expressed in developing embryos and embryonic/fetal tissues are capable of
responding to perfluorinated chemical exposures with altered gene expression
(Abbott 2009; Abbott et al. 2012; Rosen et al. 2007, 2009). All of the three PPAR
receptor isoforms (alpha, beta, and gamma) are expressed in specific patterns in
developing organ systems from early prenatal stages in the mouse, human, and rat
(Abbott 2009). In a study of gene expression, PFOA exposure altered expression of
PPARo-regulated genes in multiple developing organs of the CD-1 mouse fetus
(Abbott et al. 2012). CD-1 mouse embryos were exposed to PFOA during gestation
(pregnant mice dosed orally with PFOA at 5 mg/kg/day from GD1-17) and profiles
across time for expression of the PPAR receptors and genes regulated by nuclear
receptors were described for multiple organs at prenatal (GD14, GD17) and postna-
tal (PND1, 7, 14, 21, 28) tme points. PFOA exposure altered gene expression as
early as GD14 in liver and heart and effects on genes regulated by PPARa were
found in kidney, intestine, stomach, lung, adrenal, spleen, and thymus across the
pre- and postnatal ages. Clearly, the PPAR pathway is present in developing organ
systems and capable of responding to perfluorinated chemicals that activate PPARa.

8.5 Other PFAAs: Developmental Toxicity Studies

The interactions of PFAAs with nuclear receptors is covered in Chap. 13 and will be
dealt with in much more detail in that chapter. However, in order to discuss the
developmental toxicity of PFAAs, other than PFOS and PFOA, it is helpful to
briefly comment on the ability of members of the PFAA family of compounds to
activate PPARo. A number of in vitro studies have established that PFAAs are able
to activate PPAR« and that the responsiveness of both human and mouse PPAR«
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depends on the carbon chain length (shorter are less active that longer, e.g., PFBA
is less active than PFOA), the functional moiety (carboxylates are more active than
sulfonates), and the species (human PPARx being less active than mouse PPAR«),
(Wolf et al. 2008, 2012). Similar profiles of potency were shown in mouse and
human hepatocytes, based on effects of PFAAs on gene expression (Rosen et al.
2013). The ranking of the compounds’ ability to activate PPAR« seems to parallel
the potential for the various members of the PFAA family to cause developmental
toxicity. The two shorter carbon chain compounds, PFBA and PFBS, have very
short half-lives of elimination, show little activation of PPAR« in the in vitro assays
(requiring high concentrations), and appear to have few developmental effects and
those were noted mainly at high doses. The study of PFBA in CD-1 mice adminis-
tered oral doses from GD1-17 at 0, 35, 175, or 350 mg/kg/day (Das et al. 2008). The
highest dose resulted in significant increases in full-litter resorption and increased
maternal liver weights, but neonatal survival and postnatal growth were unaffected.
Eye opening was delayed in all PFBA dose groups and onset of puberty was delayed
in the two highest dose groups. The general lack of developmental toxicity except
at the highest doses was attributed to the rapid elimination of the chemical in the
dams. A two-generation study of PFBS in the rat using doses from 30 to 1,000 mg/
kg did not find any significant effects on fertility or reproduction in the parental and
F, generation (Lieder et al. 2009). Postnatal survival, development, and growth of
the pups was unaffected in the I, and I, generations, with the exception of a slight
delay in onset of puberty and weight gain for I, males in the highest dose group. As
with PFBA, this may be related to rapid elimination of the compound in the dam.

The developmental toxicity of perfluorohexanoic acid (PFHxA) was recently
studied in Crl:CD1 (ICR) mice (Iwai and Hoberman 2014). After exposure from
GD6-18 to doses ranging from 100 to 500 mg/kg/day, maternal mortality was noted
at 350 and 500 mg/kg/day and pup weights at birth were reduced in this dose group.
Stillbirths, reduced viability of newborn, delayed development, and reduced pup
weights were noted at 175, 300, and 500 mg/kg/day. In a developmental study in
rats, oral gavage of PFHxA on GD6-20 at 20, 100, or 500 mg/kg/day, produced
maternal toxicity (reduction in body weight and weight gain from GD6-21) at
500 mg/kg and the only developmental toxicity was a reduction in fetal weights at
that dose (Loveless et al. 2009). The relative lack of developmental toxicity at non-
maternally toxic doses, correlates with a rapid elimination of PFHXA in rats and
mice (Gannon et al. 2011). In fact the half-life for elimination in rats (approximately
2 h in male and female rat) appeared to be the same or even shorter than that found
for PFBS (3.1 h in males and 2.4 h in female rats) (Chengelis et al. 2009).

In vitro assays for activation of PPARq, predicted lower potency of the sulfo-
nates relative to the carboxylates and lower activity for shorter chain compounds,
such as PFHxS, relative to the C8 compounds PIFOA and PFOS. The rapid elimina-
tion of PFHXS in female rats would also be a major factor influencing whether or
not PFHxXS produced developmental effects in that species. The female rat has a
serum half-life of elimination of about 2 days, compared to a month in male rats and
mice of both sexes (Sundstrom et al. 2012). In a one-generation reproductive and
developmental toxicity study in rats with oral doses up to 10 mg/kg, there was a
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general lack of developmental toxicity (York 2003). In that study no effect on
fertility or reproductive outcomes was found and no effects were found for viability
or growth of the pups.

A small amount of information is available regarding the developmental toxicity
of two of the longer chain carboxylate compounds, PFNA and PFDA. In a teratol-
ogy study of PFDA, Harris and Birnbaum (1989) dosed mice orally with PFDA in
corn oil from GD6-15 (0.03-12.8 mg/kg/day) or 10-13 (0.25-32 mg/kg/day) and
reported no malformations in the fetuses on GD18, but found increased fetal deaths
and decreased live fetal weight at the high doses that were maternally toxic. As this
study did not include postnatal observations, it is not known if PFDA would have
affected postnatal survival or growth. PFNA has pharmacokinetic features similar to
those described for PFOA, with a sex difference in the elimination of the compound
in the rat where there is a serum half-life of 30.6 days in male rats and more rapid
elimination (1.4 days) in the female rat (Tatum-Gibbs et al. 2011). This difference
18 less evident in mice, where males and females have a similar half-life of elimina-
tion and Tatum-Gibbs also noted that PFNA is more persistent in the mouse com-
pared to the rat. PFNA is also a potent activator of PPAR« in the in vitro reporter
assays. These attributes suggest that PFNA would cause developmental toxicity in
the mouse. In the previously described WT and PPAR KO study this was the case,
with increased neonatal deaths and other effects in the WT, but an absence of effects
in the PPARa KO. Also, in a study with CD-1 mice, oral dosing with PENA from
GD1-17 at 1, 3, or 5 mg/kg/day resulted in effects on postnatal survival with 80 %
of the neonates in the 5 mg/kg group dead within 10 days of birth, delays in eye
opening, and delayed onset of puberty (Lau et al. 2009; Das et al. 2015).

Although there is a lack of information regarding the developmental toxicity of
most of the perfluorinated compounds, with PFOS and PFOA being the most stud-
ied, the information for PFBA, PFBS, PFHxS, and PFNA suggest that pharmacoki-
netics and potency for activation of PPARa are important factors in determining the
developmental toxicity of a perfluorinated compound. Those with fast elimination
and relatively low potency for activating PPAR« showed lesser capacity for devel-
opmental effects. Also the in vitro assays predicted that these PFAAs were not as
capable of activating the human PPAR« reporter. This prediction is supported by
studies using humanized mice (hPPARa), that express the human (and not the
mouse) PPARa gene (Albrecht et al. 2013). Wild type (WT), PPARa KO, and
hPPAR«a mice were dosed orally with PFOA from GD1-17 at 0 or 3 mg/kg/day.
Postnatal survival was affected in WT, but not in PPARa KO or hPPAR«o mice. At
the 3 mg/kg/day dose no effects were found in weight gain, eye opening, or mam-
mary gland development in any of the genotypes. However, at weaning relative liver
weight was increased in WT, but not in PPARa KO or hPPAR« mice. Although
inconsistent with other reports for effects in mice at this dose (likely due to differ-
ences in mouse strain), the endpoints with effects suggest that human and mouse
PPAR« respond differently to PFOA such that at the same level of exposure the
pups expressing mouse PPARa experience developmental toxicity and those with a
human PPAR« do not have adverse effects. It is possible that these humanized mice
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could respond at higher doses or that the model does not provide all of the
components of the pathway required for a human PPAR« response, but the lack of
a response in hPPARa mice is in alignment with lesser responses of human PPAR«
in the in vitro reporter assays (Wolf et al. 2008, 2012).

8.6 Summation

The ability of PFAAs to induce developmental toxicity depends on levels and tim-
ing of fetal exposure and 1s influenced by species and sex specific pharmacokinetic
characteristics that impact exposure of the conceptus throughout gestation and dur-
ing the lactational period. Factors influencing the pharmacokinetics and develop-
mental outcomes include chemical characteristics of a particular PFAA (carbon
chain length, functional moiety — carboxylate or sulfonate), species specific charac-
teristics (sex and species specific expression of particular transporters in the kidney
that influence clearance), timing and level of exposure (o the developing fetus, and
ability of the PFAA to activate PPARa. In vitro studies show that human, mouse,
and rat PPAR« are not equivalent in their responses to PFAAs, carboxylates being
more effective that sulfonates, and longer carbon chain PFAAs more potent that
short chain PFA As. The expression and activation of PPAR« were shown to be nec-
essary for mediating developmental effects of PFOA and PFNA, but the early post-
natal deaths caused by exposure to PFOS were not dependent on expression of
PPARo«. In general, among the PFAAs that do produce developmental toxicity in
one or more laboratory species, prenatal PFAA exposure in teratology studies typi-
cally does not result in major malformations and significant findings are often lim-
ited to higher exposure levels that result in maternal toxicity as well. The postnatal
effects in rats or mice exposed to PFA As that cause developmental toxicity are typi-
cally increased mortality in the first hours or week after birth, effects on weight
which may persist beyond weaning, delayed eye opening, potential for delayed
puberty, abnormal mammary gland development, and liver hypertrophy.
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Chapter 9
Neurotoxicity

Henrik Viberg and Espen Mariussen

Abstract The developing central nervous system is susceptible to exposure to
many different classes of chemicals and environmental pollutants and this is also
true for the PFCs. In epidemiological studies it has been seen that kids from mothers
with high PFOS and PFOA concentrations show delayed motor and cognitive devel-
opment and the prevalence of ADHD is higher in these children. The epidemiologi-
cal findings are supported by several studies in laboratory animals, where it has
been seen that PIFOS, PFOA and PFHxS exposures during the gestational period
increased the locomotor activity and caused an inability to habituate to new environ-
ments. These chemicals also affects molecular targets in the brain of test animals
after gestational exposure and in the newborn period and the cholinergic system
may be a possible target for the PFFCs. Also in cell culture studies PFCs have been
shown to be neurotoxic and affect different subtypes of PKC, sirengthening the
animal studies. All these possible effects of PFCs are similar to what earlier have
been seen for PCBs and PBDEs and there may be possible problems with co-
exposures from these different groups of chemicals.
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Abbreviations

FTOH Fluorotelomer alcohol

PFBA Perfluorobutyric acid

PEFBS Perfluorobutane sulfonic acid
PIC Perfluoroalkylated compounds
PFDA Perfluorododecanoic acid
PFHpA Perfluoroheptanoic acid
PFHSor PFHxS  Perfluorohexanesulfonic acid
PFHxA Perfluorohexanoic acid
PENA Perfluorononanoic acid
PFOA Perfluorooctanoic acid

PFOC 1H-perfluorooctane

PFOS Perfluorooctanesulfonic acid
PFOSA Perfluorooctanesulfonamide
PFPA Perfluoropropionic acid
PFTA Perfluorotetradecanoic acid
TFAA Trifluoroacetic acid

9.1 Introduction and Background

From the fertilization of the egg, through gestation and during the first years after
birth, the brain is subjected to a continuously development and disturbances during
susceptible periods can induce many different types of negative alterations. Transfer
of xenobiotics occurs from the mother to the fetus through the umbilical cord, via
mother’s milk to the newborn and via direct inhalation and ingestion to the newborn
and toddler. Knowledge about the exposure situation in fetuses, newborns, toddlers
in addition to adults is therefore important in order to predict toxic effects. Exposure
to environmental contaminants have been suspected as agents for an increased prev-
alence of attention deficit hyperactivity disorder (ADHD) and susceptibility of
dementia disorders, such as Parkinson’s disease (Barkley 1998; Brown et al. 20083;
Hardell et al. 2002; Hoffman et al. 2010; Lai et al. 2002; Rice 2000; Schettler 2001).
It has been hypothesized that environmental contaminants can affect cognitive func-
tions, such as learning and behavior, and motor skills (Grandjean and Landrigan
2006; Grandjean et al. 2014; Mariussen and Fonnum 2006). Human exposures to
PFCs are reviewed in Part I of this book, but it is worth repeating that certain tissues
and fluids are of extra interest concerning the possible developmental neurotoxic
effects of PFCs. Generally it can be said that the concentrations of PFCs are signifi-
cantly higher in maternal serum than in umbilical cord serum (Apelberg et al. 2007;
Inoue et al. 2004; Midasch et al. 2007; Monroy et al. 2008). Unlike PFOS, PFOA
appears to cross the placental barrier unhindered (Midasch et al. 2007). Only a few
studies have analyzed the levels of PFCs in brain tissue. The PFC found in the
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highest concentration in brain tissue is PFOS, followed by PFOA, which probably
reflects their historical use, persistency and accumulation potential, and rate of
elimination (Mariussen 2012). In general the levels of the PFCs are lower in the
brain than in other organs, such as the liver and kidney, and even in developmentally
exposed laboratory animals (Kawamoto et al. 2011; Mariussen 2012; Sato et al.
2009). Both the adult and developing brain are protected by the so-called blood
brain barrier (BBB) reducing the access of both exogenous and endogenous com-
pounds into the brain (Ek et al. 2012). The properties of PFCs as surfactants may,
however, modulate the membrane fluidity of the cells (Levitt and Liss 1986) and
there are in vitro studies implicating that PFOS can increase the permeability of the
blood brain barrier. Wang and co-workers showed that PFOS induced disassembly
of endothelial tight junctions in brain endothelial cells (Wang et al. 2011) and later
it was also observed that PFOS reduced mRNA expression of cellular adhesion
markers in neuronal cells (Choi et al. 2013). Newborns, toddlers and children are
the most exposed part of the population, on a body weight basis, since they tend to
inhale and ingest more than the adult population (Trudel et al. 2008). Furthermore,
it is a well-known fact that many environmental pollutants end up in the mother’s
milk, exposing the nursing neonate to a cocktail of chemicals, including several of
the PFCs, such as PTFOS, PFOA, PFHxS, PFBA, PFHxA, PFHpA and PFNA
(Antignac et al. 2013; Mondal et al. 2014; Sundstrom et al. 2011). The concentra-
tions of the PFCs in breast milk tend to be highest in mothers who is nursing for the
first tme compared to mothers who have previously nursed (Tao et al. 2008). One
study have compared concentrations of PFOS between the adult and juvenile brain
showing a higher relative concentration in brain of the rat fetuses compared with the
brains from their mothers (Chang et al. 2009), indicating that the BBB of the fetus
has increased permeability of PFOS. Bearing in mind that the PFCs are only one
group of toxicants reaching potential targets in the brain it is of importance to both
screen the extent of exposure and to evaluate their hazardous potential.

9.2 Epidemiological Studies

It is always hard to study toxicological effects in humans especially when it comes
to reproductive and developmental effects. Despite that, effort has been put into
epidemiological studies to investigate if there are connections or correlations
between levels/concentrations of PFCs in maternal serum, umbilical cord serum and
birth weight, size and other markers of development in humans. This is summarized
in Chap. 14, but some of the effects seen in these epidemiological studies indicate
that PFCs can contribute to developmental neurotoxic effects in human. In 2007,
reports came from Maryland, U.S., that both PFOS and PFOA concentrations in
umbilical cord serum were negatively associated with birth weight and head
circumference. When looking at maternal concentrations of PFOS and PFOA in
relation to motor and mental developmental in children, it can be seen that children
from mothers with high PFOS concentration are slightly delayed in time of sitting
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without support (Fei et al. 2008) and also self-reported birth defects were associated
with high PFOA exposures (Stein et al. 2009). The same research group used the
same cohort to look into the correlation between the serum levels of PFCs in chil-
dren and teenagers and the prevalence of ADHD, and found indications that high
levels of PFCs, especially PFOA and possibly also PFHxS could be factors behind
the induction of ADHD (Stein and Savitz 2011). Higher risk of ADHD in relation to
PIC levels has also been proposed by other researchers and in that study it was not
only the usual suspects mentioned, but also PFNA (Hoffman et al. 2010).

9.3 Animal Studies (In Vivo and Ex Vive Studies)

Despite few studies it is plausible to believe that PFCs have toxic effects in humans,
even though there are limited methods of measuring both exposure and effects.
Instead animal studies are used to investigate neurotoxicity and there is a number of
different experimental methods that can measure a variety of endpoints from several
different exposure paradigms, with different doses, in several different species.
Results generated from animal studies can be used to extrapolate and predict human
toxicity and are therefore of great importance. Generally, it can be said that PFC
neurotoxicity (mainly PFOS and PFOA) have been studied in all types of animals
including fishes, birds and mammals, but the vast majority of studies have been
done on rodents (Table 9.1). Usually, in order to exert an effect a compound has to
be present in the target organ. In the section about the toxicokinetics of PFCs it was
described that these compounds can reach the brain, both during development and
in adults, which indicates that neurotoxic effects may arise. There are several known
neurotoxic effects of PFCs and here we will look into some of them, starting with
neuropsychiatric and neuromotoric effects. Effects that can be linked to the above
mentioned epidemiological findings. An overview of studies on neurobehavioral
effects of different PFCs are, in addition, presented in Table 9.1.

PFOS exposure in mice during the gestational period (6 mg/kg bw/day) delayed
a couple of landmarks of neuromotor maturation, such as decreased resistance to
backward pull on postnatal days 10 and 11 and decreased climb ability and forelimb
strength on postnatal day 11. These effects were transient and not seen later during
the postmatal period (Fuentes et al. 2007b). In a more recent study dams were
exposed to different doses (0.1, 0.3, and 1.0 mg/kg bw/day) of PFOS from gesta-
tional day O through postnatal day 20. PFOS treatments had no effect during the
postnatal period when looking at the auditory startle response and learning and
memory in a swim maze. However, locomotor activity increased in PFOS treated
animals (0.3 and 1.0 mg/kg bw/day) on postnatal day 17, which ultimately leads to
the inability of the animals to habituate to the novel test environment (Butenhoff
et al. 2009a).

The behavioral effects of PFC exposure, such as negative impact on memory,
learning, and motor functions, may involve effects on several neurochemical targets.
A major challenge is to link the behavioral effects to changes in the nervous tissue,
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Table 9.1 Summary of neurobehavioral studies of PFCs* on rodents, birds and fish
Animal Exposure and chemical Behavioral effects References
Neonatal rats | Dams exposed orally to 3 mg/ : No effects Lau et al.
kg PFOS*, from GD 2 to GD (2003)
21
Neonatal rats | Dams exposed orally to 0.1, Delay in surface and air Luebker et al.
0.4, 1.6 and 2 mg/kg/day righting among offspring in | (2005)
PFOS 42 days prior to mating  the 1.6 mg/kg group
until lactation day 20
Neonatal rats | Dams exposed orally to 0.1, Male displayed increased Butenhoff

0.3 and 1.0 mg/kg PFOS from
GD 0to PND 20

motor activity and reduced
habituation in high dose
group

et al. (2009a)

Adult rats Oral exposure to 0.3, 1,3 and ; No effects in the functional Butenhoff
10 mg/kg PFHXS for observational battery or et al. (2009b)
40-50 days motor activity
Adult rats Oral exposure to 0, 6, 30 and No effects in hearing, static Butenhoff
150 mg/kg/day PFBA for rightning, grip strength or et al. (2012)
28 days motor activity. Delayed
pupillary reflex in the high
dose group
Adult rats Oral exposure to 0, 1.2, 6 and  { No effects in hearing, static Butenhoff
30 mg/kg/day PFBA for rightning, grip strength or et al. (2012)
90 days motor activity. Delay in
pupillary reflex in the high
dose group
Adult rat Oral exposure to 30 mg/kg/ Small decrease in motor Butenhoff
day PFOA for 28 days activity et al. (2012)
Adult male Adult exposure by gavage to 3 | Small effect on activity in Fuentes et al.
mice and 6 mg/kg/day PFOS for open-field and on retention (2007a)
4 weeks tests
Neonatal Dams exposed orally to 6 mg/ : Delayed neuromotor Fuentes et al.
mice kg/day PFOS from GD 12 to maturation (2007b)
18
Neonatal Dams exposed orally to 6 mg/ : Combination of PFOS and Fuentes et al.
mice kg/day PFOS from GD 12 to restraint stress reduced (2007¢)
18 mobility in the open-field
test
Neonatal Mice exposed to a single oral  : Effects on spontaneous Johansson
male mice dose of 0.75 and 11.3 mg/kg behavior and habituation in | et al. (2008)
PFOS at PND 10 2 —and 4 month old mice in
the high dose group
Neonatal Mice exposed to a single oral  : Effects on spontaneous Johansson
male mice dose of 0.58 and 8.7 mg/kg behavior and habituation in | et al. (2008)
PFOA at PND 10 2- and 4 month old mice in
all the groups
Neonatal Mice exposed to a single oral | No effects Johansson
male mice dose of 0.72 and 10.8 mg/kg et al. (2008)

PFDA at PND 10
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Animal Exposure and chemical Behavioral effects References
Neonatal Dams exposed orally to 6 mg/ | Prenatally exposed to mice Ribes et al.
mice kg/day PFOS from GD 12 to spent more time in the (2010)
18. Half of the exposed center of the open-field
animals were attributed to device. Stress counteracted
restraint stress the effect
Neonatal Mice exposed to a single oral | Effects on spontaneous Viberg et al.
male and dose 01 0.61, 6.1 and 9.2 mg/ {behavior in high dose group {(2013)
female mice | kg PFHxS at PND 10 in 2 and 4 month mice
Chicken Fertilized chicken eggs Reduced imprinting Pinkas et al.
injected on embryonic day performance at hatching day | (2010)
0-5 mg/kg or 10 mg/kg PFOS |1
Chicken Fertilized chicken eggs Reduced imprinting Pinkas et al.
injected on embryonic day performance at hatching day i (2010)
0-5 mg/kg or 10 mg/kg PFOS i1
Zebrafish 0.5 uM PFOS in water Effects on swimming speed : Chen et al.
after stimulus (2013)
Zebrafish 0.03-3,000 mg/L of TFAA, Effects on locomotor Ulhaq et al.
larvae PFBA, PFOA, PFNA, PFDA, ibehavior. Longer carbon (2013)
PEFBS, PFOS chain PFCs were more
potent than shorter chain
PFCs. PFOS most potent
Zebrafish 0.1 and 1 mg/L. PFOS Persistent hyperactivity in Spulber et al.
larvae the high dose group (2014)

*PFBA perfluorobutyric acid, PFOA perfluorooctanoic acid, PFNA Perfluorononanoic acid, PFDA
perfluorododecanoic acid, PFBS perfluorobutane sulfonic acid, PFHxS perfluorohexanesulfonic
acid, PFOS perfluorooctanesulfonic acid, TFAA Trifluoroacetic acid

which often probably result from effects on several neurochemical targets. In some
of the studies of which neurobehavioral effects of PFCs have been elucidated,
efforts have been performed to reveal neurochemical effects ex vivo (Table 9.2). In
a series of studies it has been shown that different PI'Cs may affect spontaneous
behavior and cognitive functions after administration of a single dose at specific
time points (Johansson et al. 2008, 2009; Viberg et al. 2013). Here the spontancous
behavior, locomotion (horizontal movement), rearing (vertical movement) and total
activity, was measured for an hour. In the beginning of the 60-min test period the
activity was decreased in animals exposed to PFOS, PFOA, and PFHxS, but in the
end these animals had not habituated to the novel environment and the activity was
higher than in the control animals. This type of behavior was observed both in 2 and
4 months old animals and these behavioral effects were persistent and actually
worsened with age. A fourth perfluorinated compound, PFDA (perfluorodecanoic
acid) had no effects on adult behavior. So not all PFC have the potency to induce
behavioral and cognitive disturbances. When looking at the neurochemical targets it
was showed that mice exposed to single doses of PFOS (11.3 mg/kg), PFOA
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Table 9.2 Summary of ex vivo studies of PFCs*
Chemical and

Animal concentrations Effects Ref

Mice and | Peroral adult exposure | No effects on brain neurotransmitter Sato et al.

rats to one single dose to levels of norepinephrine, dopamine, (2009)
125, 250 and 500 mg/ serotonin, glutamate, GABA or
kg PFOS* glycine, 24 and 48 h after exposure of

250 mg/kg. No brain histopathological
changes detected

Rats Maternal peroral Effects on mRNA expression of Liu et al.
exposure to 3.2 mg/kg | calcium related signalling molecules (2010a)
PFOS in food from GD ; (NR2B, CaM, CaMKHa, CREB). At
1 to PND 35. Pups PND 1 an increase in NR2B, CaM,
exposed after weaning | CaMKlla. At PND 7 increase in
(PND21)to PND 35 by { CREB. At PND 35 a decrease in NR2B
cross-fostering model

Rats Maternal peroral At PND 1 and 7 micro-arrays study Wang et al.
exposure to 3.2 mg/kg | showed effects on genes involved in (2010)
PFOS in food from GD | neurodevelopment and synaptic
1 to PND 21. Pups plasticity (ligand receptor interaction,
exposed to 3.2 mg/kg calcium signalling, cell
in food to PND35 communication, long term potentiation/

depression). Less effects on PND 35

Rats 0, 2, 8 and 32 and No brain histopathological changes Kawamoto
128 ppm PFOS in the detected etal. (2011)
diet for 13 weeks
(approximately 0.12,
0.5,2.1 and 8.5 mg/kg/
day)

Rats Maternal peroral Dose dependent decrease in mRNA Zeng et al.
exposure to 0.1, 0.6 expression of synaptophysin and (2011a)
and 2.0 mg/kg/day synapsin (Synl and 2) in hippocampus
PFOS from gestational | in pups at postnatal day O (PND 0) and
day (GD) 0-20 21. Ultrastructural changes in

hippocampus at PND 21

Rats Maternal peroral At PND 0 and 21 an increase in glial Zeng et al.
exposure to 0.1, 0.6 brain fibrillary acidic protein and S100 | (2011b)
and 2.0 mg/kg/day calcium binding protein B. An
PFOS from gestational | increased mRNA expression of TNF-a,
day (GD) 020 IL-1p, AP-1, CREB, NF-kappa-B. A

reduction in brain synapsin and
synaptophysin

Rats Maternal peroral Reduction in expression of miRNA Wang et al.
exposure to 3.2 mg/kg | involved in neurodevelopment and (2011
PFOS in food from GD | synaptic transmission. Reduction in
1to PND 7 synapse-associated proteins, vGlut,

NGRF and TTKC
(continued)
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Chemical and

Animal concentrations Effects Ref

Rats Adult rats administered | Increase in expression of CaMKII and Liu et al.
1.7,5.0, and 15 mg/l. pCREB in cortex and hippocampus. (2010b)
PFOS in drinking water | Upregulation of transcription factors
for 91 days. c-jun in hippocampus and and cortex,

and c-fos in hippocampus

Mice One subcutaneous 24 h after exposure a reduction in brain | Liu et al.
administration of 50 mg/ : superoxide dismutase (SOD) activity in | (2009)
kg PFOS at (PND 7, 14, male rats exposed at PND 7 and 21. A
21,28 and 35 reduction in brain antioxidant capability

in male rats exposed at PND 21

Mice Peroral exposure, 24 h after exposure, both compounds Johansson
administered once, of increased the concentrations of et al. (2009)
22 ymol/kg (11.3 and CaMKH, GAP-43 and synaptophysin
8.7 mg/kg PFOS and in hippocampus. PFOA increased
PFOA) to 10 days old concentration of Tau in hippocampus.
mice Both compounds increased the

concentration of synaptophysin and
Tau in cerebral cortex

Mice Peroral exposure, 24 h after exposure a reduction in Lee and
administered once, of levels of BDNF and GAP-43 in Viberg
14 or 21 pmol/kg (6.1 cerebral cortex in (9.2 mg/kg). An (2013)
or 9.2 mg/kg) PFHxS increase in CAMKII and Tau in
to 10 days old mice hippocampus in both groups. An

increase in synaptophysin in
hippocampus (9.2 mg/kg)

Chicken | Administration of one | At hatching day 1 an overall increase Pinkas et al.
dose (5 mg and 10 mg/ i in brain cytosolic PKC (PKC affy) in (2010)
kg) PFOA and PFOS in | animals exposed to PFOA, and an
egg at incubation day O  overall decrease in cytosolic PKC in

animals exposed to PFOS

Chicken | Administration of one | Upregulation of neurogranin mRINA in | Cassone et al.
dose (8.9, 94, 890, and | chicks exposed to 890 and 38,000 ng/ (2012)
9,300 ng/egg PFHxS egg PFHxS
and 9.7, 94, 1,000, and
9,700 ng/egg PFHxA)
in egg at incubation
day O

* PFHxA perfluorohexanoic acid, PFOA perfluorooctanoic acid, PFHxS perfluorohexanesulfonic

acid, PFOS perfluorooctanesulfonic acid

(8.7 mg/kg) and PFHXS (6.1 mg/kg) 10 days after birth, had increased levels of the
proteins CaMKII, synaptophysin and tau in hippocampus 1 day after the exposure
(Johansson et al. 2009; Lee and Viberg 2013). It was, in addition, shown that PFOA
and PFOS induced increased levels of synaptophysin in the mice cerebral cortex
(Johansson et al. 2009). The effects on CaMKII by PFOS, PFOA and PFHxS are
supported by changes in the gene expression of calcium-dependent signaling mol-
ecules in rat hippocampus after perinatal PFOS exposure. The expression of
calcium-related signaling molecules, which are critical to the function of the central
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nervous system, such as N-methyl-D-aspartate receptors, calmodulin, Ca(**)/
calmodulin-dependent kinase II alpha and cAMP-response element-binding, were
increased in the PFOS exposure group on postnatal day 1 (PND 1). In some cases
these changes lasted for only a short period in postnatal life, but calmodulin and the
N-methyl-D-aspartate receptor subtype-2B were still reduced on postnatal day 35
(Liu et al. 2010a). Furthermore these proteins are involved in neuronal growth, syn-
aptogenesis and mediation of neurotransmitter release and indicate that the expo-
sure of PFCs may influence the development of the juvenile mouse brain related to
cognitive functions. Synaptophysin, which is a synaptic vesicle associated protein,
has for example also been shown to be involved in modulation of cognitive func-
tions such as learning and memory, and novelty exploration (Schmitt et al. 2009). A
similar study was performed by (Zeng et al. 2011a, b) who exposed pregnant rats
daily from GD2 to GD21 for 0.1, 0.6 and 2.0 mg PFOS/kg/day. The levels of syn-
aptophysin and synapsin in hippocampus were analyzed at PND 0 and 21 showing
a reduction in the levels in hippocampus, and an increase in the levels of synapto-
physin and a decrease in the levels of synapsin in the cerebral cortex. Synapsin are
synaptic vesicle associated proteins involved in the regulation of neurotransmitter
release, and in the study by Zeng et al. (2011a) it was also claimed that PFOS
induced morphological changes in the synaptic structure and reduced numbers of
synaptic vesicles. The discrepancy from the findings by Johansson et al. (2009),
who observed an increase in the levels of synaptophysin in the mice brain, may be
due to the different administration procedure. The juvenile rats in the study by Zeng
et al. (2011a, b) were exposed chronically during pregnancy and the juvenile mice
in the study by Johansson et al. (2009) were administered a single oral acute dose
10 days afier birth. These studies, therefore, indicate that the PFCs might influence
synaptic plasticity, which may have consequences for neuronal development.

When the neonatally animals, which showed effects on cognitive function after
exposure to PFOS, PFOA, and PFHXS, were challenged with nicotine in adulthood,
their response was changed compared to normal animals.

Control animals became significantly hyperactive by the adult nicotine injection,
while the neonatally exposed animals reacted totally opposite with very little activ-
ity, displaying a clear hypoactivity. This indicates that PFC could affect the cholin-
ergic transmitter system during the neonatal brain development, because the
cholinergic system is involved in many physiological functions, including cognitive
capacity (Johansson et al. 2008; Viberg et al. 2013). Other studies support that the
cholinergic system could be a target for developmental PFC exposure. For example
choline acetyltransferase, a very important enzyme in the cholinergic system of
mamimals, is involved in the recycling of the neurotransmitter acetylcholine by join-
ing of Acetyl-CoA and choline to reform acetylcholine. In utero exposure to 3 mg
PFOS/kg bw/day, during the gestational period, in rats resulted in decreased activity
of choline acetyltransferase in prefrontal cortex at different postnatal ages (Lau
et al. 2003). Interestingly these effects on cognitive function, behavior and motor
activity, are similar to developmental neurotoxicological effects seen after gesta-
tional or neonatal exposure to other persistent organic pollutants, such as PCBs and
PBDEs (Eriksson 1998; Eriksson et al. 2001; Viberg et al. 2003a, b). In addition, the
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mechanistic background to these disturbances are also similar, meaning that they
seem to affect the same types of proteins and the same transmitter systems (Eriksson
1998; Viberg et al. 2002, 2007).

Pinkas and co-workers exposed chicks prenatally to single doses of PFOS and
PFOA at incubation day O for 5 and 10 mg/kg (Pinkas et al. 2010). The chicks were
subjected to behavioral testing at hatching day 1 and showed impaired imprinting
behavior. An ex vivo examination of the brains showed that the PIFOS exposed birds
had an overall reduction in the levels of different cytosolic PKC isoforms (PKC -a,
-B, -y), whereas PFOA induced an overall increase in the levels of cytosolic PKC. No
effects on membrane bound PKC were found. According to the authors, transloca-
tion of cytosolic PKC to the membrane is required for imprinting and plays arole in
the transfer of cholinergic input involved in learning and memory. Different PKC
isoforms have previously been postulated as possible targets following both adult
and developmental exposure to halogenated aromatic hydrocarbons, such as the
PCBs (Kodavanti et al. 1994, 1998; Yang et al. 2003). The doses used in the experi-
ment by Pinkas et al. (2010) lead, however to high mortality. Between 30 and 50 %
of the exposed eggs did not develop embryos indicating that the doses used were
detrimental to the chicks leading to other substantial non-neurotoxic effects.
Additional studies have been done by Sean Kennedy’s research group, who exposed
chickens in ovo to high doses of PFHxS and PFHxA. They saw that PFHxS induced
increases in mMRNA levels of neurogranin in cerebral cortex (Cassone et al. 2012).
Neurogranin is expressed solely in central nervous system, particularly in dendrites,
and is a calmodulin-binding protein, participating in the protein kinase C signaling
pathway. PEFHxA on the other hand did not have an effect on the mRNA levels of
neurogranin.

PFCs can affect the nervous system of mammals and birds, but other studies have
also shown that fish are susceptible to PFC exposure during their development.
PFOS and PFOA are the most studied (Shi et al. 2009; Spulber et al. 2014; Zhang
et al. 2011), and there is one particular interesting study out showing that water
exposure to several different PFCs, in zebrafish, can cause behavioral disturbances
in locomotor activity. Among the PFCs inducing behavioral disturbances were
TFAA, PFNA, PFBS and PFOS. When looking at the structure of the PFCs, PFCs
with longer carbon chain length and with attached sulfonic groups showed larger
potential to affect locomotor behavior in zebrafish larvae (Ulhagq et al. 2013).

9.4 Cell Cultures (In Vitro Studies)

In order to look into the developmental neurotoxicity of PFCs and to get a better
understanding of the potential mechanisms behind the neurotoxic effects, in vifro
experiments have been conducted and investigated such as on cell differentiation
and synaptic plasticity (Table 9.3). It has been shown that PFOSA and PFOS (50—
250 pM) promote differentiation of the PC12 cell into the cholinergic phenotype at
the expense of the dopaminergic phenotype (Slotkin et al. 2008). At the highest
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Table 9.3 Summary of in vitro studies of PFCs*
Chemical and
Preparation concentrations Effects Ref
PC 12 cells 10-250 uM PFOS promoted differentiation of ACh | Slotkin
PFOS*, PFOA, phenotype at the expense of DA et al.
PFOSA, PFBS phenotype. Induction of lipid (2008)
peroxidation and ROS, reduction in cell
viability
PC12 cells 100-500 pM Reduced cell viability and caspase-3 Leeetal
PFHxS activation; activation of ERK (pro- (2014a)
apoptotic), JNK (anti-apoptotic) and
p38MAPK. Protection by NMDA
receptor antagonist and
ERK-antagonist
Rat cerebellar 3 and 30 uM Reduced cell viability and caspase-3 Leeetal.
granule cells PFOS activation; activation of ROS and (2012)
PKC. PKC antagonists and antioxidant
(N-acetylcysteine) were protective
Rat cerebellar 12-100 uM Reduced cell viability (EC50 PFOS, Reistad
granule cells PFOS, PFOSA, PFOA, PFOSA and FTOH: 61, >100, et al.
PFOA, FTOH 8:2 13 and 15 pM respectively) and (2013)
induction of ROS (EC50 PFOS, PFOA,
PFOSA and FTOH: 27, 25, 57 and
>100 pM respectively)
Rat cerebellar 10 and 30 uM Reduced cell viability and caspase-3 Leeetal.
granule cells PFOS activation; activation of ERK (pro- (2013)
apoptotic). PKC antagonist was
protective
Rat cerebellar 100-500 pM Reduced cell viability and caspase-3; Leeetal.
granule cells PFHxS activation of ERK (pro-apoptotic) and (2014b)
JNK (anti-apoptotic). Activation of
ROS
Rat cerebellar 30 uM PFOS PFOS decreased action potential Harada
Purkinje cells frequency. Influenced Ca, Na and et al.
K-currents toward a hyperpolarized (2006)
state
Rat primary 10-100 uM PFOS | Increased frequency of miniature Liao et al.
hippocampal postsynaptic currents (mPSCs) and the 2008)
neurons and amplitude of field excitatory
slices postsynaptic potentials. Increased
inward Ca-currents and intracellular
Ca, inhibited by L-type Ca-channel
inhibitor. Suppression of
synaptogenesis in cultured neurons
Rat primary 50 and 100 pM Increased frequency of mPSCs. The Liao et al.
hippocampal PFPA, PFBA., increase was proportional to carbon (2009h)
neurons PEFOA, PFDA, chain length, and the carboxylates were
PETA, PFBS, less potent than the sulfonates
PFHS, PFOS,
PFOC
(continued)
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Chemical and
Preparation concentrations Effects Ref
Rat primary 10-100 uM PFOS | Increase in K currents and glutamate Liao et al.
hippocampal activated currents (2009a)
NEUrons
Rat primary 30-300 uM PFOS | Elevation of intracellular Ca from Liu et al.
hippocampal 100-300 uM PFOS | intracellular Ca stores and induction of  (2011)
neurons ROS. A role of ryanodine and inositol
triphosphate receptors
Neural stem cells : 25-100 nM PFOS | Decreased cell viability (100 nM). Wan
Lower number of proliferating cells Ibrahim
(50 nM) and an increase in neuronal et al.
differentiation. Upregulation of PPARy : (2013)
N2a neuronal EC50 PFOS Decreased cell viability. Decreased Choi et al.
cells 196-471 uM expression levels of mRNA of (2013)
EC50 PFOA differentiation markers (NSE, GFAP,
389-632 uM and CNP). Reduction in expression of
mRNA of cell adhesion markers
(E-cadherin and connexion)
HBMEC brain 50-160 uM PFOS | Disassembly of endothelial tight Wang
endothelial cells junctions, via the et al.
phosphatidylinositol-3 kinase/ (2011)
Akt-pathway, increasing the
permeability of PEOS

*PFPA perfluoropropionic acid, PFBA perfluorobutyric acid, PFOA perfluorooctanoic acid, PFDA
perfluorododecanoic acid, PFTA perfluorotetradecanoic acid, PFBS perfluorobutane sulfonic acid,
PFHS or PFHxS perfluorohexanesulfonic acid, PFOS perfluorooctanesulfonic acid, PFOC
1H-perfluorooctane, PFOSA perfluorooctanesulfonamide, FTOH fluorotelomer alcohol

concentration, the effect of PFOSA (100 pM) switched and promoted differentiation
into the dopaminergic phenotype. No mechanisms for the effects were postulated,
but it was suggested that the induction of oxidative stress could be a factor. PFOSA
was shown to induce lipid peroxidation and was also the most cytotoxic compound.
Wan Ibrahim and co-workers examined the effects of low PFOS concentrations
(12.5-100 nM) on differentiation of neural stem cell (Wan Ibrahim et al. 2013).
It was shown that 100 nM PFOS reduced cell viability, whereas the lower concen-
trations increased neuronal differentiation, as shown as a lower numbers of
proliferating cells and a higher number of neurite bearing cells. The effect was
attributed to PPARy activation.

One strategy to evaluate neurochemical targets of PFFCs has been to exploit their
effects on cell viability, which may indicate a neurotoxic potential of the com-
pounds. Reduced cell viability may be a response of a range of cellular processes
triggered by the toxic agents, such as oxidative stress, disruption of the calcium
homeostasis, and effects on neurotransmission and signaling. These are cellular
processes that are important for neuronal development and survival. Cerebellar
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granule cells (CGCs) have been a convenient model to evaluate the neurotoxic
potential and mechanisms of effect of a range of environmental toxicants, such as
polychlorinated biphenyls, brominated flame retardants as well as PFCs. In two
studies by Lee and co-workers, CGCs were exposed to PFOS (3 and 30 pM) and
PFHxS (=100 pM). It was observed induction of apoptosis as shown by increased
caspase-3 activity and induced DNA-fragmentation (Lee et al. 2012, 2014b).
The PT'OS induced apoptosis was connected to activation of different subtypes of
protein kinase C (PKC-a, PKC-$II and PKC-¢). The effect of PFOS and PFOA on
PKC-translocation was also observed by Pinkas et al. (2010) on developmentally
exposed chicks as described in the previous section. PKC is involved in a range of
processes in the brain such as cognitive functions, learning and memory and several
of studies have shown that other environmental toxicants, such as PCBs, dioxins
and brominated flame retardants also influence PKC activity (Kodavanti et al. 1994).
This may have implications on the risk of being exposed to mixtures of contami-
nants which have effects on similar targets. A later study by Lee and co-workers
showed that the PFOS activation of PKC was followed by activation of the ERK-
pathway (Lee et al. 2013), which is one of the mitogen-activated protein kinases
(MAPKSs). Also PFHxS was shown to induce ERK (Lee et al. 2014b). By inhibiting
the ERK-pathway, the PFOS and PFFHxS induced apoptosis was blocked. The ERK-
pathway has also been shown activated in cerebellar granule cells by tetrabromobi-
sphenol A (TBBPA), which is a brominated flame retardant and possibly by
hydroxyl-PCBs, which are metabolites of PCBs (Dreiem et al. 2009), and recently
by PFHxS in PC12 cells (Lee et al. 2014a).

Reactive oxygen species (ROS) is a collective term for short lived, highly reac-
tive compounds, often including oxygen radicals and non-radical products of oxy-
gen. The brain is especially vulnerable to oxidative damage, partly because of its
high oxygen demand, corresponding to about 20 % of the basal oxygen consump-
tion. The membrane lipids of the nerve cells are rich in polyunsaturated fatty acids
which are sensitive to attack from ROS. Nerve cells have often a large surface arca
making them more exposed to attack from ROS. ROS are typically generated as by-
products in cellular metabolism, from toxic agents, inflammations and diseases
(Halliwell and Guttenridge 1999). Oxidative stress refers to the consequence of a
mismatch between the production of ROS and the ability of the cell to defend itself
against them. In the study by (Lee et al. 2012) it was shown that PFOS induced
production of reactive oxygen species (ROS), and the detrimental effect of PFOS,
both the PKC-activation and apoptosis, was blocked by pretreatment of
N-acetylcysteine (NAC). NAC is used as a scavenger of ROS-products. Reistad and
co-workers exposed CGCs to four different PFFCs to evaluate their potential to affect
cell viability and induce ROS-formation (Reistad et al. 2013). The effect of the
PFCs varied of which PFOSA and FTOH 8:2 were considerably more cytotoxic
than PFOS and PFOA. PFOS A and FTOH 8:2 had EC50-values of 13 and 15 pM
respectively, whereas PFOS had an EC50-value of 61 pM. PFOA did not induce cell
death at concentrations up to 100 uM. Similar to these studies Slotkin et al. (2008)
showed that PFOS A was the most potent in reducing the cell viability of PC12 cells
followed by PFOS, and PFOA did not induce loss of cell viability. An interesting
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observation in the study by Reistad et al. (2013) was the lack of correlation between
cytotoxicity and ROS formation. PFOS and PFOA were equally potent ROS
inducers, with EC-50 concentrations of 27 pM and 25 pM respectively, but PFOA
did not induce cell death. PFOSA induced ROS with an EC50-concentration of
57 uM whereas FTOH had no effect, but they were equally cytotoxic. For PFOS Lee
et al. (2012) found a correlation between ROS formation and apoptosis in cerebellar
granule cells, whereas this appeared not to be the case in PFHxS induced apoptosis
(Lee et al. 2014b). Slotkin et al. (2008) found a correlation between cell viability
and lipid peroxidation in PC12 cells exposed to PFOSA and PFOS. Similar correla-
tion has also been found for PCBs, OH-PCBs and TBBPA (Dreiem et al. 2009;
Mariussen et al. 2002; Reistad et al. 2007). Cellular damage should probably ulti-
mately lead to increased ROS formation. A possible explanation for the lack of
correlation between cell death and ROS formation may be the selectivity of the
method used to identify ROS and the time after exposure when the endpoints were
measured. In addition, the PFCs also differ with respect to their physical-chemical
properties such as water solubility, which probably will reflect their ability to reach
targets in cells.

A crucial factor for normal functioning cells is maintenance of the intracelular
Ca**-homeostasis. Ca** is an important second messenger in the cells. However, a
sustained increase of the intracellular level of Ca?* may induce formation of reactive
oxygen species (ROS) followed by cellular injury. Calcium is also crucial for neu-
rotransmitter release. Upon stimulation of a neuron the transmitter molecules are
released from the nerve terminal into the synapse by a Ca** dependent process. In a
study by Harada and co-workers it was shown that 30 pM of PFOS had a modulat-
ing effect on ion currents in rat cerebellar Purkinje cells leading towards a hyperpo-
larized state (Harada et al. 2006). The effect involved voltage gated Ca**, Na* and
K* channels. In a later study, Liao and co-workers also showed that PFOS increases
K* currents at doses over 10 pM towards a hyperpolarized direction in hippocampal
neurons (Liao et al. 2009b) similar as observed by Harada et al. (2006) on cerebellar
Purkinje cells. Effects of PFOS on nervous ion currents were also found by Liao,
who showed increased Ca** currents recorded in the CAl region of hippocampal
slices and in cultured hippocampal neurons (Liao et al. 2008). It was also shown that
PFOS inhibits neurite growth and synaptogenesis in cultured neurons. The effects
could be blocked by the L-type voltage gated Ca®* channel blocker nifedipine.
These findings indicate that PFOS may facilitate influx of calcium leading to an
increased susceptibility of calcium related effects, which ultimately may lead to
reduced cell viability or impairment of cellular growth. A structure activity study
showed that the effect on the calcium currents increased with the carbon chain
length of the tail moiety of the PFCs, and that the effects of the carboxylated com-
pounds were less pronounced than the sulfonates (Liao et al. 2009a). The effects of
PFOS and PFOA on the Ca?*-homeostasis in hippocampal neurons have been eluci-
dated in more detail by Liu and co-workers, showing that the PFCs affect several
calcium dependent processes (Liun et al. 2011). The sulfonated PFOS (30 pM) was
more potent than the carboxylated PFOA (100 uM) to induce elevated intracellular
concentrations of Ca?*. The increase intracellular Ca®* appeared to be of both
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extracellular origin involving voltage gated Ca** channels, as shown by Liao et al.
(2008), and intracellular origin such as activation of ryanodine receptors and inosi-
tol phosphate-3 (IPs)-receptors. The disturbance of the Ca**-homeostasis was fol-
lowed by an increase in oxidative stress, as measured with DCF, and an increased
expression of calcineurin, which is a Ca?* activated protein phosphatase. Another
interesting finding by Liao et al. (2009a) was that a low concentration of PFOS
(1 pM) increased inward glutamate currents whereas higher concentrations of PFOS
(10 and 100 pM) dose-dependently reduced the inward glutamate currents.
Glutamate is the quantitatively the most important excitatoric neurotransmitter in
the brain. Glutamate is an excitotoxin so a prolonged stimulation of glutamatergic
receptors in the brain may cause a sustained elevation of the intracellular Ca** level
in the neuron, which can mobilize Ca?*- dependent processes, leading to inflamma-
tion, ROS production, and ultimately cause cell death (Fonnum 1998). Hippocampus,
which is mainly glutamatergic, is one of the major brain areas concerned with the
acquirement of memory, and only minor damage to this area is sufficient to produce
memory disturbances (Bliss and Collingridge 1993; Fonnum et al. 1995; Milner
1972; Victor et al. 1961).

Cytotoxicity and oxidative stress may also be induced as a consequence of
inflammatory responses, such as immune responses. In prenatally PFOS exposed
rats it was observed an increase inflammatory response in the juvenile rat brains as
shown by increased levels of the astrocyte markers fibrillary acidic protein and S100
Ca*-binding protein B in hippocampus and cortex (Zeng et al. 2011b). It was also
found an increase in the mRNA levels of proinflammatory cytokines, such as inter-
leukin 1p, tumour necrosis factor a, AP-1, NF-kappa-B and CREB. Changes in the
mRNA levels as a response on an exposure may not necessarily imply changes or
harmful effects on a higher protein or cellular level. There is, however, previously
been shown that PFOS and PFOA enhance inflammatory responses of macrophages
to lipopolysaccharide in mice, indicating that PFCs may be implicated in stress
responses related to the immune system (Qazi et al. 2009).

9.5 Summary and Conclusion

There is no doubt that PFCs can induce developmental neurotoxic effects, since
research in humans, animals and cell cultures all point in the same direction.
Functional effects in animals, such as impaired behavior and cognitive functions,
have also been investigated to elucidate the mechanisms behind the effects.
Disturbances in the processes of synaptogenesis, dendritic outgrowth and ontogeny
of neurotransmitter systems all look as plausible mechanisms and apoptosis, spe-
cific proteins, signaling molecules, calciom homeostasis as well as oxidative stress
can be the molecular reasons behind the disturbances of these processes. It is impor-
tant to remember, though, that the real world is much more complicated than expo-
sure to one single compound at the time. Therefore, effects of PFCs in combination
and/or in combination with other environmental pollutants need to be investigated.
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At the moment it is hard to find good examples of neurotoxic effects after
combination exposure to PFCs or PFCs and other types of chemicals, but one study
shows that combined exposure to low doses of PFOA and the polybrominated
diphenyl ether PBDE 209, during the neonatal period, can interact and exacerbate
adult functional neurobehavioral effects, compared to the single compounds alone
(Johansson 2009).
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Chapter 10
Immunotoxicity of Perfluoroalkylated
Compounds

Deborah E. Keil

Abstract The following chapter reports on the health impacts of perfluoroalkyl-
ated compounds in the context of in vifro and in vivo immunotoxicology studies as
well as epidemiology studies. In general, elevated serum PFAA levels reported in
adults and children correlate with observed changes in health to include decreases
in serum vaccine titers and IgE levels, or increases in antinuclear antibodies, asthma,
the common cold, and gastroenteritis. Laboratory studies demonstrate direct, in
vitro effects of perfluorinated compounds modulating TNF-«, IL-6 and IFN-y.
These studies may be linked mechanistically to alterations reporting decreases in
vaccine antibody titers in human reports and dose-responsive, decreases in IgM
antibody production in animal models. To some extent, perfluoroalkylated com-
pounds are thought to modulate gene regulation via peroxisome proliferator acti-
vated receptor alpha (PPAR«) and to a lesser extent via peroxisome proliferator
activated receptor gamma (PPARY), yet species differences affecting the expression
of this receptor complicates this interpretation as an underlying mechanism in
humans. Mechanisms of action beyond PPAR-mediated effects represents new
directions and are also discussed. As we learn more about the relationship between
perfluoroalkylated compounds and emerging health issues, this may challenge cur-
rent benchmark thresholds in drinking water to ensure adequate protection for
human health.

Keywords PFOS « PFOA « PFAAs « Immunotoxicity ¢« Immunosuppression

10.1 Immunotoxicity in Human Studies: Epidemiology

In an ongoing epidemiological study of humans living near a PFC production facil-
ity in West Virginia, levels of IgA, IgE (females only), and C-reactive protein
decreased with increasing PFOA serum concentration in adults. Additionally,
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antinuclear antibodies, a marker of autoimmunity, increased with increasing PFOA
serum concentration (Fletcher et al. 2009). In another study, there was no associa-
tion between serum PFOA concentrations and immunoglobin levels in male workers
(Costa et al. 2009). It is not until we explore the effects of PFOA and PFOS on
children exposed in utero or post-natal development, that the epidemiology studies
suggest a stronger link with immune dysfunction.

Most studies linking PFOA and PFOS to changes in immunity have been
typically examined within the scope of maternal and child health. Specifically,
perfluorinated contaminant blood levels and health of mothers and children have
been monitored over time to learn about susceptibility to disease or vaccine titers.
In one study, the relationship between maternal PFOA and PFOS exposure and
hospitalization due to incidence of childhood infectious disease was examined. Fei
and colleagues (2010) measured PFOA and PFOS in maternal blood during the first
trimester of pregnancy in nearly 1,400 women from the Danish National Birth
Cohort. Mean serum PFOA was 5.6 ng/ml and PFOS was 35.3 ng/ml. However,
these data did not unequivocally support that prenatal exposure to PFOA and PFOS
increased the risk of hospitalizations due to infectious diseases during early child-
hood. Limitations of the study include social and behavioral factors that may have
influenced the correlation between PFCs and age-related immune responses.

The incidence of infant allergies, infectious disease and changes in IgE levels in
cord blood have also been examined with regards to maternal PFFC exposure. Okada
et al. (2012) measured PFOS and PFOA in maternal serum after the second trimes-
ter (n=343) and total IgE concentration in cord blood (n=231). Maternal self-
administered questionnaires indicated no significant association with maternal
PFOA levels and incidence of infant allergies and infectious disease. However, cord
blood IgE levels in female infants only, decreased significantly with increasing
maternal serum PFOA. As a point of reference, mean maternal PFOA concentration
was 1.4 ng/ml and IgE levels in cord blood was 0.62 IU/mL. In contrast to this
study, Wang et al. (2011) reported that PFOA and PFOS concentrations in cord
blood were positively correlated with cord blood IgE levels, but only in male off-
spring. However, following these children to the age of 2 revealed no association
between PFCs and atopic dermatitis.

A sub-project of the Norwegian Mother and Child Cohort Study examined
maternal serum concentrations of PFOA and PFOS and the antibody titers of 3-year
old children (Granum et al. 2013). Average maternal serum concentrations were
1.1 ng/ml for PFOA and 5.6 ng/ml for PFOS. In 3 year old children, a positive asso-
ciation was observed between maternal PFOA and perfluorononanoic acid (PFNA)
with number of episodes of common cold, as well as between PFOA and perfluoro-
hexane sulfonate (PFHxS) with number of episodes of gastroenteritis.

Dong et al. (2013) investigated the relationship between perfluorinated
compounds and incidence of childhood asthma. This was a cross-sectional study of
231 children age 10-15 years with physician-diagnosed asthma and 225 age-
matched non-asthmatic controls recruited from two hospitals in Northern Taiwan.
Serum was collected for measurement of ten perfluorinated compounds while abso-
Iute eosinophil counts, total IgE, eosinophilic cationic protein and asthmas were
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assessed. Both PFOA and PFOS serum levels were significantly associated with
biomarkers and asthma severity scores in the children. Serum levels of PFOS in
asthmatic and non-asthmatic children were 45.5+37.5 and 33.4+26.4 ng/mL,
respectively, while serum levels of PFOA in asthmatic and non-asthmatic children
were 1.5+1.3 and 1.0+ 1.1 ng/mL respectively.

In a prospective study, a birth cohort of 587 singleton births during 1999-2001
from the National Hospital in the Faroe Islands examined children’s antibody levels
to diphtheria and tetanus vaccines in the context of perfluorinated compounds
(Grandjean et al. 2012). Serum antibody concentrations were measured in mothers
and children at age 5 years pre-booster, approximately 4 weeks after the booster,
and at age 7 years. Previously, prenatal exposures to perfluorinated compounds
were assessed in the mother during week 32 of pregnancy. Average maternal serum
concentrations analyzed at 32 weeks of pregnancy were 3.2 ng/ml for PFOA and
27.3 ng/ml for PFOS. Serum concentrations were collected from the children at
5 years of age (mean of 4.06 ng/ml for PFOA and 16.7 mg/ml for PFOS) and serum
antibody concentrations were collected at 5 and 7 years of age. Prenatal exposure to
PFOA and PFOS were negatively associated with antibody titers against diphtheria.
Matemal PFOS exposure was most strongly associated with responses in 5 year
olds and postnatal exposure to both PFOA and PFOS were most strongly associated
with responses in 7 year olds. The authors also examined deviations from the
clinically protective level of 0.1 IU/L and reported that both pre- and postnatal
exposure to PFOS and postnatal PFOA exposure were associated with increased
odds of antibody titers being below clinically protective levels. The researchers
learned that a twofold increase in levels of PFOS and PFOA at age 5 lead to a
several fold decrease in protective antibodies against diphtheria and tetanus.

When gathering additional data, Grandjean and Budtz-Jgrgensen (2013)
estimated benchmark doses based on their 2012 study, under the assumption that
previously published benchmark doses (BMDs) are not adequately protective of
children or of the general public given potential suppression of immune responses.
A BMD of 1.3 ng/ml for PFOS and 0.3 ng/ml for PFOA were determined.
Additionally, they calculated a BMDL (benchmark dose level, or lower one-sided
95 % confidence limit of the BMD) of 1 pg/l and a reference dose (RfD) of 1 ng/L
The US EPA provisional health advisory for drinking water is 0.4 pg/l for PFOA
and 0.2 pg/t for PFOS (2010/2015 PFOA Stewardship Program). As the latter is
grounded on developmental and subchronic toxicity, these references levels are not
likely to encompass immunotoxicity that are derived using serum levels (i.e., and
RiD of 1 ng/l). If a BMD based on serum vaccine titers were acknowledged, then
current limits may be several hundred-fold too high.

10.2 Immunotoxicity in Human Studies: In Vitro

Only a few studies investigate the direct, in vifro effects of perfluorinated com-
pounds on human cells. Using donated blood from 11 volunteers, peripheral blood
mononuclear cells (PBMCs) were isolated and tested for NK cytolytic activity
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following in vifro exposure to PFOA or PFOS (Brieger et al. 2011). Viability of
PMBCs was not affected, yet suppression of NK cytolytic activity and increasing
TNF-o following lipopolysaccharide (LPS) stimulation was observed. Using a
human promyelocytic cell line (THP-1), cellular mechanisms of PIFC immunotoxic-
ity have been examined by other researchers (Corsini et al. 2011, 2012, 2014). In
addition to PFOS and PFOA, perfluorobutane sulfonic acid (PFBS), perfluorodeca-
noic acid (PFDA), perfluorooctanesulfonic acid (PFOSA), and a fluorotelomer (8:2
Telomer) all suppressed LPS-induced TNF-a production. PFOSA, PFOS, PFDA,
and fluorotelomer affected IL-6 and IFN-y release. All compounds except PFOA
suppressed PHA-induced IL-10 release. These studies also report that PFOA and
PFOS have different effects on immune cells and that PFOA-mediated suppression
of cytokine production appeared to be dependent on PPAR« activation whereas the
actions of PFOS were independent of PPARa activation. Furthermore, leukocytes
from female donors appeared to be more sensitive to PFCs than male donors, sug-
gesting sex differences with regard to immune responses. These in vifro studies in
the context of epidemiology studies, demonstrate that perfluorinated chemicals
affect immunological cells by altering cytokine expression and these observations,
although early in this investigation, can be linked mechanistically to alterations
reported in decreased vaccine antibody titers reported in human studies.

10.3 Immunotoxicity in Rodent Models

Preliminary concerns about PFC immunotoxicity were based early reports that
indicated reduction in relative spleen and thymus weights and suppression of the T
cell dependent antibody response (TDAR). PFOA, PFOS, and ammonium perfluo-
rooctanoate (APFO, a precursor compound to PFOA) in rodent models have
demonstrated that these compounds suppress TDAR and, in the case of PFOS,
suppress TDAR at doses within the range of exposures for the general human
population (Peden-Adams 2008; reviewed in DeWitt et al. 2009, 2012). Since
SRBC-specific IgM production is considered predictive of immunotoxicity and
decreased host resistance (Luster et al. 1992, 1993; Selgrade 1999), these alterations
in murine immune function are useful in extrapolating to human health risk
(Selgrade 2007). Consequently, the focus of further research reports have concen-
trated on possible mechanisms of action related to this aspect of immune function.

PFOS and PFOA have both been shown to alter antigen-specific antibody pro-
duction to a T cell dependent antigen, namely sheep red blood cells (SRBC). Using
a B6C3F1 mouse model and SRBC challenge, PFOS decreased IgM production (as
measured by the plaque-forming cell response) in both male and female mice (1.66
and 16.6 pg/kg/day, respectively, lowest observed adverse effect level [LOAEL] for
each sex) at blood concentrations of 91.5+22.2 ng/g and 666+ 108 ng/g (mean+ SD)
by 52 % and 50 %, respectively (Peden-Adams et al. 2008). Moreover, TDAR
suppression due to PFC exposure has been supported with replication in at least four
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reported studies (Peden-Adams et al. 2008; DeWitt et al. 2008; Zhang et al. 2013;
Dong et al. 2009).

Keyhole limpet hemocyanin (KLH) antigenic challenge (T cell dependent
antigen) has also been used to test adaptive immune function following exposure to
PFCs. Conversely, KLH-specific IgG levels were not affected in female Sprague-
Dawley rats following exposure to PFOS (Lefebvre et al. 2008). Depending on the
methodology, plaque-forming cell or ELISA, it is not uncommon to observe
different outcomes in these assays, even with two T cell dependent antigens
(Loveless et al. 2007; White et al. 2007).

Adaptive immunity to a T cell independent antigenic challenge also varies
following exposure to PFCs. Using TNP-LPS challenge, a T cell independent
antigen, IgM antibody production was decreased at 0.334 mg PFOS/kg/d (334 pg/
kg/day; 12). In a separate study with C57BL/6 female mice, the T cell independent
antibody response also was suppressed after 15 days of drinking water exposure to
1.88 mg/kg of PFOA (DeWitt, unpublished data).

In addition to effects on adaptive immunity, PFOS and PFOA also effect cell
populations in the bone marrow (Qazi et al. 2012). Specifically, a high dose, 10 day
dietary exposure significantly reduced the total numbers of cells in the bone marrow
including myeloid, pro/pre B, immature B and early mature B cells. Partial or
complete restoration of the cell number occurred following 10 days of withdrawal
of these compounds. At the lower dose of 0.002 %, only PFOA reduced the
B-lymphoid cell population.

Quantitatively linking an immunological effect to onset of disease is key to
improving species extrapolation and characterization of potential human health
risks. The following studies demonstrate such a link. A LOAEL has been estab-
lished at 0.5 mg/kg PFOS total dose (serum level=666+108 ng/g) in female
B6C3F1 mice for decreased SRBC-IgM production (Peden-Adams et al. 2008). At
comparable exposure levels, Guruge and colleagues (2009) reported susceptibility
to influenza A-induced mortality. Taken together, these reports suggest that PFOS-
induce humoral immune suppression at lower levels of exposure may be enough to
compromise a host to disease onset. This is further corroborated by a study demon-
strating that the PFC response may be predicative of susceptibility to influenza virus
(Burleson and Burleson 2010) and recent studies in humans that indicate PFOS and
PFFOA may be associated with decreased responses to childhood vaccines (Grandjean
et al. 2012; Granum et al. 2012).

As rodents are useful in characterizing immunotoxicity, these models are not
without caveats. For instance, immunotoxicity outcomes vary between species and
gender following exposure to PFOS and PFOA. Mice seem to be more sensitive to
the effects of PFOS and PFOA as compared to rats (Loveless et al. 2008; DeWitt
et al. 2008; Yang et al. 2002; Peden-Adams et al. 2008; Lefebvre et al. 2008). In
both a rat and mouse model, males were more sensitive to the noted effects on
antibody production (Peden-Adams et al. 2008; Lefebvre et al. 2008). In fact, a
tenfold difference in the LOAEL (based on dose and approximately sevenfold
difference based on serum PFFOS concentrations) was reported between males and
females (Peden-Adams et al. 2008). B6C3F1 mice exposed during gestation
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demonstrated an increased male sensitivity to PFOS-induced suppression of IgM
antibody production (Keil et al. 2008). As we learn more about possible mecha-
nisms of action of PI'Cs, gender and species disparities may be explained in part by
differences PPARa expression.

10.4 Mechanisms of Action in Immunotoxicity

The weight of evidence suggests that the primary mechanism of action for PFC-
induced modulation of cellular processes is via the activation of PPARs (reviewed
by Anderson et al. 2008; Butenhoff et al. 2012; Rosen et al. 2010). Both PFOS and
PFFOA bind to the peroxisome proliferator activated receptor alpha (PPAR«). These
transcription factors (PPARa and PPARYy) are ubiquitous and regulate gene
expression by modulating lipid pathways, increasing permeability of mitochondrial
membranes, affecting glucose regulation, cell proliferation, and inflammatory pro-
cesses (Post et al. 2012; Starkov and Wallace 2002). Activation of PPAR«a by PFCs
has been a major focus of mechanistic studies, with a greater role for PPARa as
compared to PPARy in mediating toxicity (Post et al. 2012; Takacs and Abbott
2007; Vanden Heuvel et al. 2006).

It is considered that immunotoxicity varies between species and gender due to
the differential expression of these PPAR transcription factors in humans and in
rodent models. Human hepatic PPARo expression is only one-tenth that of rodents
(Kennedy et al. 2004). In general, males endure a longer half-life elimination rate as
compared to females (Kudo et al. 2006).

Some studies have suggested other routes of toxicity for PFCs, however, many of
these proposed pathways are not independent of the influence of PPAR. This is
largely due to the fact that PPAR transcription factors are extensively expressed on
lymphocytes, hepatocytes, cardiac cells, and microglia with the potential to affect
numerous physiological pathways. Further examination of alternate mechanisms of
actions by PFCs is certainly necessary to facilitate a more complete consideration of
human health effects.

10.5 Proinflammatory Cytokines

Both PFOS and PFOA bind to the peroxisome proliferator activated receptor alpha
(PPARa) and a significant number of PPAR«x agonists have been shown to reduce
inflammation (Griesbacher et al. 2008). Therefore, it would seem that PFCs would
reduce expression of cytokines or other related inflammatory markers. However,
this is not the case. Increases in serum levels of the proinflammatory cytokines IL-6
and TNF-a associated with PIFOS and PFOA exposure have been reported in mouse
models. Qazi et al. (2009) reported increased basal serum concentrations of IL-6 in
male C57BY/6 mice, but not TNF-« following exposure to 400 mg/kg total dose
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(0.02 % in diet for 10 days of either PFOS or PFOA). This pattern of increased basal
serum IL-6 but not TNF-o was also reported by Dong et al. (2011) in male C57BV/6
mice exposed to 50 and 125 mg/kg total dose of PFOS. Mollenhauer et al. (2011)
reported increased serum IL-6 and decreased serum TNF-a at 1 mg/kg total dose
following LPS injection and PFOS exposure for 28 days.

Proinflammatory cytokines are produced by peritoneal macrophages in the
presence of PFCs. Following LPS challenge in vifro or in vivo, peritoneal macro-
phages responded by producing more TNF-a and IL-6 at PFOS concentrations
ranging from 25 to 400 mg/kg total dose (Qazi et al. 2009; Dong et al. 2011). PFOA
exposure also increases ex vivo TNF-a production after both in vifro and in vivo LPS
stimulation at 400 mg/kg total dose (Qazi et al. 2009). Dong et al. (2011) observed
increased ex vivo production of TNF-or and IL-6 from mixed spleen cell cultures at
125 mg PFOS/kg total dose while Qazi et al. (2009) reported similar results at
400 mg PFOS/kg total dose for TNF-a production, but not IL-6 production. Most
PPAR« agonists are known to reduce inflammation, yet this is not the case with
PFCs. This is likely to suggest that PFCs possess multiple mechanisms of action on
immune function that are not typical PPARa agonist mediated effects.

10.6 Conclusions

We have learned from rodent models that both PFOS and PFOA induce a dose-
responsive suppression on adaptive immunity in mice. One of the primary differ-
ences between these two is that PFOA reduced the number of B and T cells (Yang
et al. 2002), while PFOS induced suppression of antigen-specific antibody responses
independent of significant reductions in B and T cell numbers (Dong et al. 2012;
Peden-Adams et al. 2008; Keil et al. 2008). The mechanism(s) involved in PFC-
induced suppression of adaptive immunity is likely linked with altered cytokine
signaling that arises from interaction of PFCs with PPAR«, but may also be related
to the interaction of PIFCs with other signaling molecules, such as NFxB (Corsini
et al. 2012).

When extrapolating rodent studies to humans, it is concerning that suppression
of adaptive immunity occurs at PI'C exposure levels that are within a reasonable
range for human exposure. Furthermore, the few human epidemiology studies
currently available generally report that T-cell dependent production of antibody
following vaccination is suppressed. This is further weighted with comparable
observations in rodent models. However, mechanisms of action beyond PPAR«-
mediated effects require further examination. Human and rodent studies are far
from complete and it is clear that we must learn more about mechanism(s) of
immunotoxicity to reduce PFC-associated health effects and improve regulatory
exposure limits.
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Chapter 11

Effects of PFOA on Endocrine-Related
Systems

Casey E. Reed and Suzanne E. Fenton

Abstract Perfluorooctanoic acid (PFOA) is an 8-carbon fully fluorinated chemical
that has reported effects on endocrine-related systems in rodents, humans, and other
species. Numerous endocrine organs may be targets for PFOA, including the brain,
thyroid, pancreas, adipose tissue, ovary, uterus, testes, and breast. Developmental
exposure effects have been reported on behavior, serum thyroid and gonadal steroid
profiles, breast epithelial growth, and metabolic end points, such as serum insulin,
leptin, and triglyceride levels and weight gain. Many of these PFOA-induced effects
have been reported in two or more species. The mechanisms for these numerous
effects are poorly understood and deserve further investigation to define the
pathways that should be avoided as PFOA-replacement products enter the market.

Keywords PFOA ¢ Mammary gland ¢ Thyroid  Endocrine disruptor ¢ Puberty ¢
Lactation e Fertility

11.1 Introduction

Perfluoroalkyl acids (PFAAs) are chemicals with carbon chains that are completely
fluorinated. There are a wide variety of PFAAs in the environment that could have
potential endocrine effects, but there has been minimal research on most PFAAs;
this chapter will focus on the endocrine-related effects of perfluorooctanoic acid
(PFOA). PFOA is persistent, lipophobic, can bind proteins, and is highly detectable
in wildlife and human serum (White et al. 2011a). This chapter will focus on
developmental exposures and their long-term effects. There has not been enough
research on the other PFAAs to include for this focus. The exact mechanism(s) of
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action for endocrine-related effects of PFOA has not been discovered; however it has
been shown that a variety of target tissues and health outcomes from PFOA expo-
sure are endocrine-related such as mammary gland, thyroid, and adipose tissue (Lan
et al. 2003; Macon et al. 2011; White et al. 2007; Hines et al. 2009) (see Fig. 11.1).

There are key times in development where exposure to chemicals can have a long
term effect. Developing infants from the fetal period to the prepubertal period are
sensitive to environmental toxins because of the high growth rate (cell proliferation
and differentiation) that takes place during this period (Birnbaum and Fenton 2003).
Each time a cell proliferates or divides it offers an opportunity for mistakes in
genomic repair, methylation, or programming to occur which may translate to
growth of abnormal cells; thus the result may be cancer (Birnbaum and Fenton
2003). The placenta protects against the transmission of some compounds from the
mother’s circulation into fetal circulation, however PFOA can bypass this protective
mechanism (Fei et al. 2007; Gutzkow et al. 2012; Inoue et al. 2004). Early-life
exposures may predispose individuals to more chronic adverse effects than later life
exposures when rapid cell division no longer occurs (Landrigan et al. 2002).

Endocrine Targets

_____ Brain

¢ Neurobehavioral changes

»  Paossible hypothalamus effects
e Altered TSH regulation

Thyroid
e Altered T3 and T4
e Hypothyroidism

Breast
e inhibited milk protein production KM’
£

development §

¢ Delayed mammary gland

Adip tissue
¢ Increased leptin and insulin
® Increased BM!

¢ Increased triglycerides, increased
DL, decreased HOL

QOvaries
e Altered ovulation

Uterus
o Altered hormane/ steroid e Altered estrogen signaling -
receptor levels
e Passible infertility/

subfertility

preaclampsia

i gt »  Altered time at first menarche
; ] e lrregular menstruation

Fig. 11.1 Perfluorooctanoic acid (PFOA) is known to have effects on numerous endocrine targets.
Effects of the chemical have been associated with brain, pancreas, thyroid, breast, adipose, ovarian
and uterine effects in female rodent research models and in women for some of the listed out-
comes. Endocrine effects have also been reported in males, but there is less data available
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Therefore, exposure to PFOA that occurs during gestation and through the time of
puberty is concerning in that it may reprogram endocrine-related signaling and
result in long-term adverse health effects.

PFOA has been the target of much animal and human epidemiological research.
Animal research primarily utilized mice because the elimination kinetics of PFOA
in mice is more similar than rats to that of humans. Rats have a shorter PFOA elimi-
nation half-life than mice, and demonsirate a rapid elimination in reproductive-aged
females, resulting in differences in excretion between males and females that do not
lend well to developmental toxicity studies (Fenton et al. 2009; Lau et al. 2007).
There are numerous studies that have evaluated human PFOA exposures because it
is found in more than 99 % of the general U.S. population through contamination of
food, water, house dust, and air (Winquist et al. 2013). One particular study, the C8
Health Project (C8HP), focuses on highly-exposed residents of the Mid-Ohio Valley
(Winquist et al. 2013). The C8HP includes two cohorts: one made up of community
members 20 years and older and a separate group comprised of occupationally-
exposed individuals (Winquist et al. 2013). These cohorts, and others like them
around the world, provide vital insight into the human effects correlated with
varying levels of PFOA exposure.

11.2 Gestational Exposure and Pregnancy Outcome

Adult PFOA exposure primarily occurs through intake of contaminated food and
water while transplacental transfer and breast milk are important routes of exposure
for fetuses and infants (Mondal et al. 2012; Haug et al. 2011; Fromme et al. 2310).
PFOA has the highest placental passing ratio of all the PFAAs (0.89:1), indicating
that it can pass easily through the placental barrier and into the fetal environment,
and may result in fetal exposures that are equivalent to years of exposure by the
mother (Liu et al. 2011). The transfer ratio of PFOA was two times higher than that
of perfluorooctane sulfonate (PFOS), another highly studied PFAA (PTOS ratio was
0.54:1) (Liu et al. 2011).

One way to measure human gestational PFOA exposure is to analyze its concen-
tration in umbilical cord blood and to compare that to maternal serum levels.
Declining serum levels of PFOA can be detected in the first trimester of pregnancy
in women (Javins et al. 2013), indicating an early life transfer of serum PFOA to the
developing fetus. Maternal sera and cord blood measurements for PFOA are
reported to be strongly correlated (R>0.5; p<0.01) (Kimet al. 2011), and one study
found higher PFOA concentrations in cord blood than in maternal serum with a cord
blood:maternal PFOA ratio of 1.3 (Midasch et al. 2007). Most studies, however,
report higher PFOA levels in maternal serum than in umbilical cord blood with
ratios ranging from 0.67 to 0.87 for paired samples (umbilical serum:maternal
serum) (Fei et al. 2007; Hanssen et al. 2010; Inoue et al. 2004; Kim et al. 2011;
Monroy et al. 2008; Needham et al. 2011). World-wide, PFOA has been detected in
cord blood from the general population in the U.S., Canada, Germany, Norway,
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Australia, South Africa, Korea, and Taiwan in concentrations ranging from 1.1 to
4.4 ng/ml (Post et al. 2012). These data provide strong evidence for transplacental
transfer of PFOA between maternal and fetal circulation.

Developmental toxicology studies have found that PFOA has the potential to
affect fetal growth and development. In studies designed to understand the transfer
of PFOA from dam to fetus/neonate, CD-1 mice were given a single exposure o
PFOA late in gestation (gestational day [GD] 17). This exposure did not affect the
number of live fetuses, implantation sites, or weight of live-born pups on GD18 or
post natal day (PND) 1 (Fenton et al. 2009). Interestingly, although dam serum con-
centrations were significantly greater than amniotic fluid levels collected the morn-
ing before birth, pups that were just a few hours old exhibited a significantly higher
serum PFOA concentration than that of their dam due to the degree of placental
transfer, and possibly from a short suckling period (Fenton et al. 2009). The levels
of PFOA in mouse milk were 2040 % that of maternal serum in early and late
lactation when milk and blood volumes are low, relative to peak lactation, when
milk PFOA levels were 10-20 % that in the maternal serum. Milk transfer of PFOA
in rats (Hinderliter et al. 2005) and humans (Karrman et al. 2007) is reportedly less
efficient than the mouse, with PFOA milk:maternal serum distribution ratios of 0.1
and 0.01, respectively.

There are a range of adverse developmental outcomes associated with PFOA in
rodent models including decreased fetal weight and increased neonatal mortality
(Lau et al. 2007; Olsen et al. 2009). PFOA effects in mice often occur in a dose-
dependent manner. One study exposed pregnant mice to PFOA (doses from 1 to
40 mg/kg) from GD 1 through GD 17 (Lau et al. 2006). The exposures did not
impact the number of implantations but there were significant increases in the
number of full-litter resorptions starting at 5 mg/kg (Lau et al. 2006). There were no
significant differences in live pup weights at doses at or equal to 10 mg/kg and
significant prenatal losses were observed at the 20 mg/kg dose (Lau et al. 2006).
Although most pups were born alive, there were increases in the incidences of still-
birth and neonatal mortality at doses of 5 mg/kg and higher (p<0.05) (Lau et al.
20006). At lower doses (1 and 3 mg/kg), there were significant changes in postnatal
growth and development, particularly in the form of growth retardation and
delayed eye opening (Lau et al. 2006). These doses are much higher than ordinary
human exposures.

As stated previously, PFOA transfer to the developing fetus can be detected in
the first trimester of pregnancy for humans (Javins et al. 2013). The first trimester
marks a period of time where there is abundant fetal development where the nervous,
cardiovascular, digestive, respiratory, renal, and endocrine systems are forming,
which makes perturbations during this time period potentially catastrophic (Javins
et al. 2013). Although there has yet to be a thorough investigation of the endocrine-
disrupting effects of perfluorinated compounds, there are numerous endocrine-
related outcomes that are correlated with PFOA serum levels during pregnancy and
birth. Pregnancy is a time of particular interest not only because of potential devel-
opmental insults to the fetus, but also because it can result in adverse pregnancy
outcomes. Preterm birth (before 37 weeks gestation), pregnancy-induced hyperten-
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sion (PIH), and low birth weight (less than 2,500 g) are often described as adverse
pregnancy outcomes, all of which are linked to endocrine system dysregulation.
There was little evidence of an association between PFOA and preterm birth or
low birth weight among the C8HP cohort (Darrow et al. 2013), but two studies
found modest inverse associations between birth weight and maternal PFOA con-
centration (Apelberg et al. 2007; Fei et al. 2007). These results have not been
repeated in other studies (Savitz et al. 2012; Monroy et al. 2008; Washino et al.
2009; Nolan et al. 2009). However, a recent meta-analysis was performed on all of
the available data from animal and human studies related to birth weight and PFOA
exposures. The in-depth analyses indicated a significant —0.023 g reduction in birth
weight of offspring of non-human mammalian species for each unit (mg/kg birth
weight/day) increase in PFOA dose (Lam et al. 2014). The human data analysis,
with numerous studies analyzed together, resulted in ‘sufficient’ evidence of PFOA
negatively affecting fetal growth (Lam et al. 2014). Prior to this meta-analysis, there
was no summary of human data to support an association between PFOA exposure
and clinically significant endpoints of growth restriction.

To date there is no evidence to link PFOA exposures with preterm delivery in
women (Savitz et al. 2012; Fei et al. 2007; Hamm et al. 2010; Darrow et al. 2013);
however one of the endocrine-related health outcomes that may lead to preterm
delivery, PIH, has been associated with PFOA exposures. An association between
increased maternal PFOA levels and PIH in the C8HP cohort was reported based
upon log-transformed and categorical analyses (27 % increased odds with 95 % CI)
(Darrow et al. 2013). Modest associations between serum PFOA and self-reported
preeclampsia have been reported (Stein et al. 2009), but this finding associating
PFOA and PIH was not evident in a study involving birth records (Savitz et al. 2012)
or in a Norwegian cohort with background PFAA levels (Starling et al. 2014a).
Savitz and colleagues (2012) have suggested that the maternal physiology is a more
important determinant of pregnancy outcomes than the degree of PFOA exposure.
Therefore maternal age, parity, and BMI all impact the absorption and elimination
and can determine the amount of exposure the fetus receives from any chemical
which makes causal associations difficult to verify (Savitz et al. 2012).

11.3 Lactation

Lactation is a physiological state that is regulated and maintained by the endocrine
system and endocrine disruptors or chemicals that interact with the endocrine
system can alter mammals’ ability to lactate. Data indicate an association between
the length of time a woman has lived near a source of PFAA contamination and the
level of PFOA in her breast milk (von Ehrenstein et al. 2009). There is evidence that
not only will PFOA be eliminated in milk to potentially affect the offspring, but it
may also affect breast function. Animal models indicate that there are changes in
maternal mammary gland structure after developmental PFOA exposure and that
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PFOA exposure inhibits production of normal milk proteins, leading to increased
pup mortality (White et al. 2011a, b; Lau et al. 2006). These data are further
described in Chap. 8 in this book.

Many chemicals can pass through the maternal system and be transferred to the
infant through breast milk. As previously mentioned, human studies have found that
there is not only placental transfer of PFOA but that lactational transfer occurs and
may provide the majority of infant PFOA exposure (Inoue et al. 2004; Apelberg
et al. 2007; Monroy et al. 2008; Tao et al. 2008; Mondal et al. 2012; Fei et al. 2007,
Fromme et al. 2010; Kim et al. 2011; Needham et al. 201 1). Epidemiological studies
focusing on the C8HP cohort found a higher child:maternal serum PFOA ratio in
children (12 months old) whose mothers breast fed exclusively versus those who
were breast and/or bottle fed (1.83 for breast feeding only and 1.14 for breast/bottle
fed) (Mondal et al. 2012). Another study estimated that breast milk contributes over
83 % of infant PFOA exposure even though the concentration of PFOA measured in
breast milk was low (Haug et al. 2011). A small survey of Italian mothers found that
the highest levels of PFOA in milk came from primiparous women (Barbarossa
et al. 2013). None of the findings were statistically significant because of the low
number of participants, however it appears to indicate that PFOA concentrations in
breast milk decrease after the first lactation and, therefore, first born infants may
have higher exposures of PFOA (Barbarossa et al. 2013; Tao et al. 2008).

Exposure to PFOA via transplacental transfer and milk leads to an elevated body
burden in humans and rodents. One study estimated that infant PFOA exposure
through milk is 2,173 ng, which is much higher than the 183 ng PFOA received
through gestational exposure (Liu et al. 2011). Higher exposure results in elevated
PFOA body burden for infants, from birth through 6 months of age, compared to
adults (Fromme et al. 2010). Mouse studies found a similar increased body burden
from GD18 through PNDS8 and decreased between PNDS and 18 when milk intake
decreased (Fenton et al. 2009). One study in particular has generated a great deal of
useful data concerning elimination of PFOA into breast milk and the burden in the
infant over time. Breastfeeding mothers in the C8HP were found to have a lower
geometric mean PFOA concentration than non-breastfeeding mothers in the same
cohort (Mondal et al. 2014). Consequently, the breastfed infants in the cohort had a
higher PFOA concentration (geometric mean of 49 ng/mi) than non-breast fed
infants (geometric mean of 22 ng/ml) (Mondal et al. 2014). Overall the serum PFOA
concentration of breastfeeding mothers decreased 3 % per month of breastfeeding
to culminate in an estimated 34 % decrease in maternal serum PFOA concentration
after breastfeeding for 12 months (Mondal et al. 2014). The infants who were
breastfed for 12 months had PFOA concentrations that were 141 % higher than their
formula-fed counterparts (Mondal et al. 2014). Concerns regarding the comparison
of findings between labs because of differences in limits of detection and accidental
PFOA contamination by lab equipment (Mondal et al. 2012) may be minimal as a
second recent study evaluating PFOA burden in adolescent girls in the San Francisco
Bay and Greater Cincinnati areas also reported highly significant increases in serum
PFOA and other PFAAs correlated with the duration that the child was breastfed
(Pinney et al. 2014).
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11.4 Puberty

Puberty is another vulnerable life stage where environmental influences have been
linked with health problems. Severe pubertal delays may be a risk factor for infertil-
ity while moderate delays may predispose females to endometriosis, osteoporosis,
and psychosocial issues (Lopez-Espinosa et al. 2011). Human epidemiological
studies are inconsistent in regards to associations between PFOA exposures and
pubertal timing. One study found that PFOA was associated with earlier puberty
(Pinney et al. 2009); other studies find PFOA concentration to be associated with
later time to first menstruation (Lopez-Espinosa et al. 2011; Kristensen et al. 2013);
and yet another study found no relationship between pubertal timing and PFOA
concentration (Christensen et al. 2011). It should be noted that there are specific
differences in how pubertal timing is measured. Some studies measure pubertal
attainment by breast development (Pinney et al. 2009), sex steroid hormone levels
(Lopez-Espinosa et al. 2011), and self-reported age at menarche (Lopez-Espinosa
et al. 2011; Christensen et al. 2011). Kristensen et al. (2013) studied a group of
women who had in utero PFOA exposure. These women reached menarche
5.9 months later than a reference group with a lower PFOA exposure and found a
statistically significant delay in menarche in relation to prenatal PFOA exposure
(p=0.01). There was no association between PFOA exposure and menstrual cycle
length, reproductive hormone levels, or number of ovarian follicles among this
cohort (Kristensen et al. 2013).

Mouse studies have found associations between PFOA concentration and altered
ovarian function (altered hormone/steroid receptor levels), delayed vaginal opening
at high doses, delayed mammary gland development (at the lowest doses tested),
and histopathological changes in the reproductive tract that would indicate delays in
pubertal timing (Yang et al. 2009; White et al. 2011a, b; Dixon et al. 2012;
Zhao et al. 2012; Macon et al. 2011; Tucker et al. in press). These effects appear
to be dependent on PFOA exposure level, timing of exposure, and there
may be some effects that are dependent on strain sensitivity (Macon et al. 2011;
Tucker et al. in press).

11.5 Subfecundity/Subfertility

Subfecundity, or prolonged time to conceive, is often a measure used to determine
the fertility of females. Similar to other endocrine-related endpoints discussed
earlier in this chapter, the epidemiological data related to PFOA and subfecundity
are mixed. Two studies found an association between increased time to pregnancy
and PFOA serum concentration (Whitworth et al. 2012; Fei et al. 2009), while
another found no association (Vestergaard et al. 2012). The study by Whitworth
et al. (2012) specified that the odds ratio for subfecundity was elevated only in par-
ous women (OR for the highest quartile=2.1), while no effect was seen in the
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nulliparous women (OR for the highest quartile=0.5). The proportion of women
diagnosed with infertility (longer than 12 months without conceiving) in the Danish
National Birth Cohort study was higher in the three higher quartiles of PFOA expo-
sure versus the lowest quartile, indicating that PFOA may permanently alter an
endocrine-related mechanism required for conception (Fei et al. 2009).

The mechanism of action by which PFOA alters female fertility is unknown,
howeverithas been hypothesized thatit may be an interaction with the hypothalamic-
pituitary-ovarian axis, which in turn could trigger irregular menstruation, altered
time of ovulation, or early spontaneous abortions (Fei et al. 2009). There is potential
for the mode of action for increased time to pregnancy associated with high PFOA
levels to include PFOA-induced irregular menstrual cycles (Fei et al. 2009). A
report of longer menstrual cycles associated with the highest tertile of PFOA
exposure was recently published using pooled estimates of over 1,600 women from
Poland, Greenland, and Ukraine (Lyngso et al. 2014).

11.6 Thyroid

The thyroid gland is an integral part of the hormone regulatory system. It is needed
for normal metabolic function. Thyroperoxidase catalyzes the transfer of iodine
during thyroid hormone synthesis and PFOA decreases the activity of this enzyme
in a cell-based system (Song et al. 2012). PFOA can also interfere with thyroid
hormone levels and the sensitive feedback mechanisms they are associated with.
Monkeys treated with PFOA were found to have decreased thyroid hormones
thyroxine (T4) and triiodothyronine (T3), without the expected increase in thyroid
stimulating hormone (TSH) (Calafat et al. 2007). This suggests that PFOA may
block thyroid hormones from their binding proteins. Studies focused on individuals
occupationally exposed to PFOA have had variable findings. PFOA exposure has
ranged from no association with thyroid function (Olsen et al. 1998), to weakly
positive changes in T3 (Olsen and Zobel 2007), to significant associations with
elevated T4 and reduced T3 uptake (Huang et al. 2011). The C8HP recently pub-
lished strong evidence for validated thyroid disease in relation to PFOA exposure
estimates in combined cohorts of residents and workers in the Mid-Ohio Valley
(n>32,000 participants and n > 4,000 with reported disease) (Winquist and Steenland
2014). The trend for PFOA-related disease was more pronounced among woinen
and absent in men, with hypothyroidism being the predominate disease. PFOA has
also been linked to hypothyroidism in children (Lopez-Espinosa et al. 2012). A
small and subclinical association between elevated serum free T4 and PFOA, with-
out a concomitant decrease in TSH, was found in a cohort of Chinese adolescents
and young adults (Lin et al. 2013). The group hypothesizes that PFAA exposure
caused a syndrome of reduced thyroid responsiveness to thyroid hormone or that
there may be TSH hypersecretion from the pituitary (Lin et al. 2013). The mecha-
nism of interference between PFOA and the hypothalamic-pituitary-thyroid axis is
still unclear.
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There is a significant increase in serum T4 and reduction in T3 uptake in adults
with 1 or more years of PFOA exposure (Knox et al. 2011). Using National Health
and Nutrition Exposure Survey (NHANES data), TSH levels were found to increase
with PFOA concentration, indicating that PFOA is associated with subclinical
hypothyroidism in adults (Jain 2013). There was also a slight decrease in total T4
levels and no increase in total T3 in relation to PFOA concentration among this
group (Jain 2013). In a separate analysis, NHANES data also indicated that there
was an association between PFOA serum concentrations and self-reported thyroid
disease (Melzer et al. 2010). Women in the highest PFOA exposure quartile (>5.7 ng/
mL) were more than twice as likely to exhibit thyroid disease as women in the lower
quartiles (<4 ng/mL) (Melzer et al. 2010). The significant effect in women was not
recapitulated in men, although the trend was similar (Melzer et al. 2010). Because
PFOA predominantly has thyroid effects on women, it has implications for pregnant
mothers where thyroid hormone dysregulation can alter gene expression and devel-
opment of the fetal brain (Javins et al. 2013). In utero thyroid levels are also involved
in programming future body weight and therefore PFOA dysregulation of thyroid
hormones may have implications for obesity later in life (Grun and Blumberg 2009).

11.7 Obesity/Fat Tissue/Lipid Metabolism

Obesity is a global problem that affects people of all ages and ethnicities. Over
10 years ago, researchers began suggesting that the rise in obesity is correlated with
the marked increase in the number of industrial chemicals on the market (Baillie-
Hamilton 2002) and that over-eating and less physical activity are not valid explana-
tions for the epidemic. There are approximately 85,000 chemicals on the U.S.
market. Of these, approximately 2 % have been tested and several have proved to be
endocrine disrupting compounds. It is widely accepted that adipose tissue is an
endocrine organ that produces hormones that act on other tissues in the body. The
main hormones produced within adipose tissue are leptin, adiponectin, steroids, and
resistin (Guerre-Millo 2002; Harwood 2012). Leptin is produced by white adipose
tissue to regulate food intake, metabolism, and puberty progression (Gueorguiev
et al. 2001). Low leptin levels or leptin resistance is related to adult overweight and
obesity in a variety of animal models after developmental exposures to chemicals
including PFOA (Newbold 2010).

A toxicology study in CD-1 mice investigated the metabolic effects of gesta-
tional and lactational PFOA exposure. They exposed mice to low doses of PFOA
(0.01-5 mg/kg/day) during pregnancy and found that the doses of 0.01 mg/kg/day
to 0.1 mg/kg/day induced elevated leptin, insulin, and body weight while the
1 mg/ke/day and 5 mg/kg/day doses caused decreased body weight after female
offspring reached 10 weeks of age (Hines et al. 2009). Further, removing the ovaries
prior to puberty prevented the body weight-related effects of the PFOA exposure
indicating that the ovarian axis plays an important role in the PFOA-related
metabolic effects (Hines et al. 2009). This study also dosed adult mice and found no
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effect on body weight related to PFOA exposure which indicates that gestation and
early life is a vital window for these PFOA effects (Hines et al. 2009).

A human study by Halldorsson and coworkers (2012) found maternal PFOA
concentration to be positively associated with body mass index (BMI) and waist
circumference among 20-year old female offspring of women who had PFOA expo-
sure during their pregnancy (p<0.05; n=345). The women whose mothers were in
the highest quartile of PFOA exposure had a BMI that was 1.6 kg/m?® higher and a
waist circumference that was 4.3 cm bigger than those females whose moms were
in the lowest quartile (Halldorsson et al. 2012). There was no statistical difference
between the males. Further, similar to the Hines study (2009), increased maternal
PFOA levels were associated with increased insulin, leptin, and leptin-adiponectin
ratio and inversely associated with adiponectin (Halldorsson et al. 2012).

One potential mechanism of action for these findings includes in utero PFOA
exposure possibly interfering with ovary development or function which can lead to
impaired estrogen synthesis (Hines et al. 2009). Another hypothesis is that PFOA
interacts with peroxisome proliferator activated receptors (PPAR) alpha or gamma,
signal transducers which are important in lipid metabolism in fat cells (Hines et al.
2009). Recent data utilizing prepubertal mammary tissue (mostly fat) suggests that
PPAR gamma may indeed be an important modulator of effect following PFOA
exposure (Macon et al. in press).

There are other important metabolic factors that are not directly weight-related,
including cholesterol/triglyceride levels. Numerous studies have reported a positive
association between PFOA levels and total cholesterol or LDL levels in humans
(Nelson et al. 2010; Frisbee et al. 2010). A highly exposed occupational group not
only had increased cholesterol in relation to PFOA exposure but they also exhibited
increased triglycerides and lower HDL (the good cholesterol) (Olsen et al. 1998).
The Norwegian Mother and Child Cohort Study, demonstrating low level expo-
sures, found no evidence of an association between elevated triglycerides and PTAA
concentrations in pregnant women (Starling et al. 2014b), suggesting that this may
be an exposure-related effect.

In mice, however, serum cholesterol and PFOA are inversely correlated which
indicates that there are different mechanisms of action for PFOA effects on choles-
terol between mice and humans (White et al. 2011a; Quist et al. in press). Obesity
and cholesterol-related heart disease are major contributors to adult morbidity so
any modifying factors, such as preventing or limiting chemical exposures, could be
potentially important in long term health and healthcare delivery systems.

11.8 Men

Much of the epidemiology and toxicology studies have focused primarily on female-
related endpoints. Although fetal exposure to PFOA is inevitable there seems to be
less focus on male outcomes. However, male mice who were developmentally
exposed to >1 mg/kg/day PFOA may exhibit early onset puberty (Lau et al. 2006).
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A longitudinal study of sons of women who were recruited during pregnancy
was conducted by Vested et al. (2013) to determine if in utero PFOA exposure is
related to semen quality and reproductive male hormone levels. The study found no
relationship between the gestational PFOA exposure and abnormal spermatozoa
morphology. This finding may be related to the fact that morphology and motility of
spermatozoa are determined in adolescence and adulthood during sperm produc-
tion. Two other studies focusing on PFOA and PIFOS in combination found that the
chemicals were negatively associated with the percentage of morphologically nor-
mal spermatozoa (Joensen et al. 2009; Toft et al. 2012). Statistically significant
associations between PFOA and sperm count, sperm concentration, and LH were
obtained after transforming data to obtain a normal distribution and correcting for
confounders (Vested et al. 2013). There was a positive association between gesta-
tional PFOA exposure and LH and FSH in adulthood related to the idea that high
gonadotropin concentrations are associated with low sperm concentration and
sperm count (Vested et al. 2013; Appasamy et al. 2007; Gordetsky et al. 2012).
Further studies need to be done to determine the male-specific effects of PFOA
exposure, as the work by Vested et al. (2013) suggests that the fetal male reproduc-
tive system may be impacted by maternal PFOA exposures.

11.9 Conclusions

Although there has been little focus on PFOA as an endocrine disruptor, per se,
there are numerous significant correlations between PFOA exposures and endocrine-
related disease states (Fig. 11.1). Future studies should focus on modes of action in
animal and human studies to identify the similar effect pathways. This will enable
industry to design replacement chemicals that do not perturb those pathways and
may in turn be a safer product.

Additional attention should be given to the timing of PFAA exposure and the
disease end point, as the exposure that had the most impact on the end point may
have been months, years or decades earlier, during a critical period of development
for the endocrine-related tissue of interest. PEAA measurements made during mean-
ingful life stages should be compared to latent disease end points. Further research
is needed to determine the role of PFOA on many health outcomes, but the effects
on the thyroid and adipose tissue are developing a weight of evidence to solidify a
space for PFOA on the growing list of endocrine disrupting chemicals.
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Chapter 12
Carcinogenicity of Perfluoroalkyl Compounds

Gerald L. Kennedy and J. Morel Symons

Abstract This chapter reviews the information available on the carcinogenic
potential of perfluoroalkyl acids in both animals and humans. Historically, perfluo-
rooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) have been the most
widely used members of this chemical class making these the subject of the largest
proportion of the reported studies. Caution needs to be exercised in projecting the
biological activities of any of the chemicals in this family based on results from oth-
ers. For example, considering the three chemicals for which lifetime studies in rats
are available, the outcomes were different with no increase in tumors seen with
perfluorohexanoic acid (PFHxA), liver adenomas seen with PFOS, and adenomas of
the liver, testis, and pancreas seen with PFOA. Mechanistic studies suggest that the
liver tumors seen with PFOA reflect the activation of PPAR«a while the mechanism
for tumor formation in the testis and pancreas is less clear. Epidemiologic studies
have been reported for several levels of population exposure. Limited evidence of
associations with kidney and testicular cancer has been reported in studies among
community members exposed to drinking water contaminated by PFOA. Studies in
workers exposed to higher levels of both PFOA and PFOS have not shown consis-
tent evidence for an association with any specific cancer type. Studies in popula-
tions exposed to low levels of PFOA and PFOS have shown equivocal results for a
variety of cancers with no consistent associations. Based on the evidence reported
to date, the prospect for developing a carcinogenic outcome following exposure to
PFOA and PFOS is remote. For other perfluoroalkyl acids, there is not sufficient
evidence regarding their potential carcinogenicity. It should be noted that human
exposures to these chemicals is currently quite low and appears to be decreasing.

Keywords PFOA « PFOS « Rodent carcinogenicity » PPAR alpha activation
Worker epidemiology ¢« Community epidemiology

G.L. Kennedy (&)
Consultant to DuPont, Wilmington, DE 19805, USA

515 Wissfire, Wilmington, DE 19803, USA

e-mail: gkdomer64@aol.com

J.M. Symons
DuPont Epidemiology Program, Newark, DE 19714, USA

© Springer International Publishing Switzerland 2015 265
J.C. DeWitt (ed.), Toxicological Effects of Perfluoroalkyl

and Polyfluoroalkyl Substances, Molecular and Integrative Toxicology,
DOI110.1007/978-3-319-15518-0_12

ED_002974_00000598-00274



266 G.L. Kennedy and J.M. Symons

This chapter will cover the published information relating to the potential
carcinogenic activity of perfluoroalkyl acids. The reader will quickly notice that the
information cited comes mainly from one member of this family of compounds,
perfluorooctanoic acid (PFOA). A natural conclusion might be that this is the key
member of the family in terms of potential carcinogenic activity. However, the focus
on this chemical comes from the effort to more completely describe potential haz-
ards of this particular chemical because it, like many members of the family, is
capable of entering the human body and has attenuated elimination kinetics. Animal
studies on PFOA, perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid
(PFHxA) evaluating carcinogenic potential have been conducted while other mem-
bers of this chemical class have not been studied. Industrial use of PFOA and PFOS
has resulted in occupationally exposed workers who have been studied for cancer
mortality and, less frequently, cancer incidence. Community members living near a
chemical plant in West Virginia using PFOA were studied because of exposure
through PFOA-contaminated water. This activity resulted in an evaluation of the
cancer profile in these surrounding communities. This type of information was
designed to look at the potential impact of PFOA on these communities where expo-
sures were greater than seen in other communities but not as great as exposures in
workers making and using the chemical.

It might be tempting to look at the structural similarities of these chemicals and
use results from one member of the group to predict biological activities of others.
Indeed, it has been suggested that, similar to the approach taken for polychlorinated
biphenyls, dioxins, and dibenzofurans, the use of Toxic Equivalency factors be
employed for risk assessment purposes. Scialli et al. (2007) used data from four dif-
ferent perfluoroalkane acids (PFOS, PFOA, perfluorobutanesulfonate-PFBS, and
perfluorodecanoic acid-PFDA) where tests were available on the same species using
essentially the same designs, and constructed dose-response curves which could be
modeled for concordant endpoints. Scialli and colleagues were unable to identify a
scaling system that gave values consistently within an order of magnitude for the
same compounds and concluded that combining exposure levels of perfluoroalkane
acids for risk assessment was not supportable. A caution to this conclusion was that
with additional data being made available, this position could be re-evaluated.
Peters and Gonzales (2011) also looked at the appropriateness of using toxic equiv-
alency factors for perfluoroalkyl chemicals and also concluded that the use of such
an approach is likely unsuitable. Four facts which do not support predicting the
effect of one perfluoroalkyl chemical by using the results from another are that, first,
on a mechanistic basis, the effects of these chemicals are modulated by more than
one receptor. Second, where comparative data are available, the induced effects are
quite discordant. Third, very limited information has been published to evaluate
either additivity or synergism with these chemicals. Fourth, the lack of solid data
does not allow application of additivity. Importantly, the lack of a strong data base
for many of the commonly used commercial perfluoralkyl chemicals seriously lim-
its evaluation. Peters and Gonzales (2011) also presents inherent limitations that
would need to be overcome including bioavailability and pharmacokinetics, under-
standing of the target genes the mediate toxicity, influence of species differences,
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12 Carcinogenicity of Perfluoroalkyl Compounds 267

identification of potential nonadditive effects, and influence of endogenous
chemicals that could modify the effect(s) of these chemicals.

Thus, the reader is cautioned to apply the information presented for a specific
chemical to that chemical and not extend the findings (or non-findings) to other
perfluoroalkanes. Also, because the reader will note that material covered here is
predominantly derived from studies of PFOA, and to a lesser degree studies of
PFOS, it must be remembered that this reflects more accurately their use rather
than their potential for biclogic activity among members of this chemical family.
A final introductory note is that when evaluating the human information, those
individuals exposed to greater amounts of chemical would be expected to produce
a greater, rather than a lesser, chance of response. Therefore, studies in those work-
ing directly with the material would have the greatest exposure and would be most
likely to respond.

12.1 Animal Studies

12.1.1 Bioassays with APFO

A limited number of long-term studies looking at the carcinogenic potential of
PFCs have been published. With APFO (the ammonium salt of PFOA), two long-
term feeding studies were conducted in rats (Biegel et al. 2001; Butenhoff et al.
2012). Two-year studies were also conducted in rats fed PFOS (Thomford 2002)
and PFHxA (Klaunig et al. 2014). Although the dosing period was only 6 months,
studies in monkeys were conducted with PFOA (Butenhoff et al. 2002) and PFOS
(Seacat et al. 2002) which included looking at a variety of endpoints associated with
long term outcomes which could be linked to cancer (Butenhoff et al. 2002).

For APFO, rats of both sexes were fed either 30 or 300 ppm (approximately
1.5 and 15 mg/kg) for 2 years (Butenhoff et al. 2012). A significant increase in
Leydig cell tumors of the testes was seen in the males fed 300 ppm. No increase
in tumor incidence of any other tissues or organs was seen in the males fed
30 ppm or in both groups of females (Table 12.1). The conclusion of the original
study was that there was no increase in the incidence of proliferative lesions in
the mammary gland in the APFO-treated rats above the historical control and
normal expected background incidence from the published literature for female
Sprague-Dawley rats. However, the incidence of fibroadenomas in the mammary
gland was increased in the high-dose group when compared to the concurrent
controls; therefore, a Pathology Working Group (PWG) review of this tissue was
conducted using current diagnostic criteria. The consensus reached by the PWG
was that the incidence of mammary gland neoplasms (lobular hyperplasia, fibro-
adenoma, and adenoma) was not affected by chronic dietary administration of
APFO, and no increase in proliferative lesions in that tissue were produced
(Hardisty et al. 2010). The primary difference between the original reported
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Table 12.1 Incidence of neoplastic microscopic findings for male and female rats in either control
groups fed 30 ppm or 300 ppm APFO in their diet for 2 years

Dietary dose group (ppm APFO)
Organ/lesion Males Females
0 130 1300 0 130 1300
Adrenal
Pheochromocytoma, 2/49 (4)* :4/50 (8) 4/50(8) 2/50(4) 0/50 (0y :0/49 (0)
benign
Pheochromocytoma, 0/49 (0) 1/50(2) 10/50 (0) i0/50(0) 0/50 (0y 1 1/49 (2)
malignant
Liver
Hepatocellular 0/49 (0) 1 0/50 (0) 10/50(0) 0/50(0) 0/50 (0) 10/50 (0)
adenoma
Hepatocellular 3/49(6) 1750 (2) :5/50 0/50 (0) 0/50 (0) 1/50(2)
carcinoma (10)
Mammary gland - - - 7146 (15) 14/45 5/44 (11)
(3D
Adenocarcinoma - - - 3/46 (7) 0/45 (0 10/44(0)
Adenoma - - - 1/46 (2) 0/45 (0) 0/44 (0)
Carcinoma - - - 10/46 (22) 19/45 21/44
(42) (48)°
Fibroadenoma - - - 0/46 (0) 0/45 (0) 1/44(2)
Lymphangiosarcoma - - -
Reevaluation by PWG®
Adenocarcinoma 9/50 (18) 116/50 5/50 (10)
32y
Adenoma 1/50 (2) 0/50 () 0/50 (0)
Fibroadenoma 16/50 (32) {16/50 20/50
(32) (40)
Fibroadenoma 2/50 (4) 6/50 3/50 (6)
(multiple) (12)
Pituitary
Adenoma 17/48 17147 13/46 33/46 (72) 39M47 36/50
(35) (36) (28) (83) (72)
Testes/epididymis
Leydig cell adenoma 0/49 (0) 12/50(4) 17/50 - - -
a4y
Thyroid
C-cell adenoma 0/43 (0) 247 &) 447 (9) 11/50(2) 0/45 (0y :0/41 (0)
C-cell carcinoma 2/43(5) 1 0M470) 047 (0) 0/50(90) 0/45(0) 0/41(0)

“Statistically significant different from controls (p <0.05)

*Number observed/number examined (%)

"Hardisty et al. (2010)

°The incidence in the groups sharing this footnote were statistically significantly different from
each other (p<0.01, Hardisty et al. 2010)
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finding and the PWG involved classifying lesions originally noted as lobular
hyperplasia as fibroadenomas and this occurred mainly in the control group.

A dose-related increase in the incidence of ovarian tubular hyperplasia was found
in female rats sacrificed at 2 years (Mann and Frame 2004). The significance was
unknown and there was no progression to tumors. Using more recently published
nomenclature, these lesions were diagnosed as gonadal hyperplasia or tubular
adenoma and no statistically significant increase in hyperplasia and adenomas was
seen in the PFOA -treated rats. There was some evidence for an increase in stromal
size in the 300 ppm group but the total number of rats with either adenoma or hyper-
plasia was 12, 16, and 17 in the 0, 30, and 300 ppm groups respectively which does
not suggest a risk for tamor development.

To investigate the time course and mechanism of action of APFO, a 2-year feeding
study in rats was conducted with a number of interim sacrifices to measure potential
treatment related changes as a function of exposure time (Biegel et al. 2001). To
match the exposure conditions in an earlier chronic study in rats (Butenhoff et al.
2012), a single test group exposed to 300 ppm was used along with a group pair-fed
to the 300 ppm group to detect any possible influence of changes in feeding amounts.
Increase in the incidence of adenomas in the liver, pancreas, and testis were seen in
male rats receiving 300 ppm (equivalent to a daily dose of approximately 15 mg/kg)
as shown in Table 12.2. Hyperplasia of both the pancreas and the testis was also
increased. Cell proliferation was seen in the pancreas but not in either the liver or
the testicular Leydig cells (Biegel et al. 2001).

The above tumor triad was produced in rats by clofibrate (Svoboda and Azarnoff
1979), HCFC-123 (Malley et al. 1995), gemfibrozil, and diethyl-hexyl phthalate
(DEHP). Trichloroethylene (TCE) produced both liver and Leydig cell tumors
(Cook et al. 1999; David et al. 2000; Voss et al. 2005). Nafinopen (Cook et al. 1999)
produced both liver and pancreatic tumors. Other chemicals causing Leydig cell
tumors in rats include clofibrate, gemfibrozil, methyl clofenazide, perchloroethy-
lene, and TCE (Cook et al. 1999). In mice, estradiol exposure leads to Leydig cell
tumors while estrogenic compounds do not induce testicular tumors in rats (Cook

Table 12.2 Incidence of liver, testes, and pancreas tumors in rats fed 300 ppm APFO in the diet
for 2 years

Groups: Control Pair fed PFOA
Tumor Cancer
Liver Adenomas 2/80° 1/79 10/76"
Carcinomas 0/80 2179 0/76
Testes Adenomas 0/80 2178 8/76"
(Leydig cell) Hyperplasia 11/80 26/78" 35/76'
Pancreas Adenomas 0/80 1/79 7/76"
Carcinomas 0/80 0/79 1/76
Hyperplasia 14/80 8/79 30776

*Statistically significant different from controls (p <0.05)
*Number affected/number of rats tested
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et al. 1999). In F344 rats there is an age-related increase in serum estradiol which
correlates with Leydig cell hyperplasia and tumor formation (Grunewald et al.
1992).

Pancreas acinar cell tumors are modified by steroid concentrations, growth
factors, cholecystokinin (CCK), and dietary fat (Longnecker 1983, 1987; Longnecker
and Sumi 1990). CCK is a growth factor found in the gut mucosa which is released
by the presence of food in the duodenum, then binds to pancreatic tumor cell recep-
tors to release pancreatic secretions including chymotrypsin. It has been hypothe-
sized that PFOA increases fat content in the gut by enhanced excretion of cholesterol
and triglycerides resulting in hyperplasia and adenomas.

To look further at the induction of Leydig cell adenomas by APFO, male rats
were treated by oral gavage with either 1, 10, 25, or 50 mg/kg for 14 days along with
a group of pair-fed controls to the 50 mg/kg rats (Cook et al. 1992). A decrease in
the rate of body weight gain was seen at 10 mg/kg and higher, and, since the body
weights of the group of pair-fed and its control group were similar, this was attrib-
uted to decreased food intake. At the top two doses, accessory sex organ weight was
decreased while testes weights and histopathology were unchanged. Serum estra-
diol levels were increased at 10 mg/kg and higher being 2.7 times control levels at
50 mg/kg. Serum testosterone concentrations decreased (3.2, 1.6, 1.6, 1.2, 0.8, and
0.7 ng/dl in rats receiving 0, 1, 10, 25, 50, and 50 mg/kg pair-fed respectively).
Similarly, interstitial cell testosterone levels were lower in the APFO-treated rats
with the greatest effect seen at 50 mg/kg in the pair-fed group. Liver weights at
10 mg/kg and higher were increased and beta oxidation also increased from 8 to 11
times in a dose-related fashion (Cook et al. 1992).

In a series of studies to determine the level of the testosterone lowering lesion,
rats were given 50 mg APFO/kg for 14 days followed by treatment with human
chorionic gonadotropin, gonadotropin-releasing hormone (GnRH), or naltrexone.
Human chorionic gonadoptropin (hCG) affects lesions in the steroidogenic pathway
by binding to luteinizing hormone (LLH) receptors on Leydig cells to stimulate
testosterone synthesis. GnRH affects lesions at the adenohypophysis by stimulating
LH release from gonadotropin. Naloxone affects lesions at the hypothalamus by
enhancing GnRH release by removal of inhibitory action of opiate neurotransmit-
ters on GnRH controlling neurons. Only hCG led to a 50 % decrease in serum tes-
tosterone suggesting the lesion was at the testes modifying the conversion of 17
alpha to androstenedione. No changes seen with GnRH treatment suggests that the
lesion was not at the pituitary level, and, for naltrexone, the lack of change suggests
that the lesion was not at the hypothalamus level.

In a 6-month study in which cynomolgus monkeys were given daily doses of
either 3, 10, or 30/20 (dose reduced to 20 mg/kg after 2 weeks) mg APFO/kg, the
effects on biological markers associated with the hepatic, pancreatic, and testicular
responses (seen in rats dosed with APFO and other peroxisome proliferating chemi-
cals) were evaluated (Butenhoff et al. 2002). There was no increase in peroxisomal
proliferation as measured by palmitoyl CoA oxidase activity. The approximately
twofold increase seen at the high dose reflects that this species is not particularly
responsive to peroxisome proliferating compounds. No changes in reproductive
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hormone levels were seen as estradiol, testosterone, and cholecystokinin
concentrations in each monkey were unaltered over the course of the experiment.
No evidence of cholestasis as indicated by changes in bile acids, bilirubin, or
alkaline phosphatase, was observed. Cell proliferation in the liver, pancreas, or tes-
tes, as demonstrated by replicative DNA synthesis, was not affected by APFO treat-
ment. Although the study duration was only 6 months, biological markers associated
with responses in the three tissues shown to result in adenomas in the rat were not
affected.

12.1.2 Bioassay with PFOS

A 2-year study with PFOS fed to male and female rats at concentrations of 0, 0.5, 2,
5, and 20 ppm (dosing equivalents of 0, 0.02, 0.10, 0.25, and 1.1 mg/mg respec-
tively) was conducted (Thomford 2002). An extra group fed 20 ppm for 1 year fol-
lowed by a 1 year recovery with no PFOS added to the diet was employed. The
incidence of hepatocellular adenomas in male rats showed a positive trend with 7/60
(11.7 %) found in the high-dose group compared to (/60 (0 %) in the control group.
In females, the incidence of hepatocellular adenomas was also increased with 5/60
(8.3 %) observed in the high-dose group compared to 0/60 in the control group. In
addition, the only hepatocellular carcinoma in this study occurred in this group
(Table 12.3).

Among males fed 20 ppm PFOS for 1 year with 1 year recovery, the incidence of
thyroid follicular cell adenomas appeared to be increased. This was not observed in
males fed 20 ppm continuously for 2 years or in females.

Another non-dose related observation was the apparent increase in mammary
gland tmors in the group fed 0.5 ppm. Combining rats with either a mammary
adenoma or a carcinoma, the incidence in all groups including the controls was rela-
tively high. None of the remaining tissues or organs had tumor incidences that could
be related to the feeding of PFOS. Further, although some of the incidence values in
some of the test groups appear greater than those in the control group, the lack of a
dose-response allows only a suggestion of carcinogenicity in the rat.

In a 6-month study in which cynomolgus monkeys were given daily doses of
either 0.03, 0.15, or 0.75 mg potassium PFOS/kg, the effects on biological markers
associated with the hepatic, pancreatic, and testicular responses seen with APFO in
rats were evaluated (Seacat et al. 2002). Hepatic peroxisome proliferation measured
by palmitoyl CoA oxidase activity was increased in the females given 0.75 mg/kg
but the response was less than the twofold change typically associated with
biological significance. No effects on cell proliferation were seen in either the liver,
pancreas, or testes using the proliferating cell nuclear antigen immunohistochemis-
try cell labeling index.
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Table 12.3 Incidence of neoplastic microscopic findings for rats fed PFOS for 2 years

Dietary
PFOS
(ppm) 0 0.5 2 5 20 208
Males
Tumors
Liver-hepatocellular 0/60 3/50 3/50 1/50 7/60% 040
adenoma
Thyroid
Follicular cell adenoma 3/60 5/49 4/50 4/49 4/59 9/39*
Follicular cell 3/60 1/49 1/50 2/49 1/59 1/39
carcinoma
Females
Liver
Hepatocellular adenoma 0/60 1/50 1/49 1/50 5/60% 2/40
Hepatocellular 0/60 0/50 0/49 0/50 1/60 0/40
carcinoma
Thyroid
Follicular cell adenoma 0/60 0/50 0/49 2/50 1/60 1/40
Follicular cell 0/60 0/50 0/49 1/50 0/60 0/40
carcinoma
Mammary gland
Adenoma 23/60 30/50% 22/48 126/50 i15/60 | 16/40
Carcinoma 11/60 12/50 11/50 1 11/50 114/60 | 10/40
Combined adenoma 29/60 36/50 31/48 129/50 (24/60 | 17/40
and carcinoma

From Thomford (2002)
*p<0.05
AFed PFOS for 1 year, contro} diet for 1 year

12.1.3 Bioassays with Other Polyfluorinated Compounds

A 2-year rat study was conducted to evaluate both the chronic toxicity and potential
carcinogenicity of perfluorohexanoic acid (PFHxA) (Klaunig et al. 2014). Male rats
were given daily gavage doses of either O (control), 2.5, 15, or 100 mg PFHxA/kg
for 104 weeks. Female rats were given daily doses of either 0, 5, 30, or 200 mg
PIHxA/kg. No increase in neoplasms related to treatiment of PFHXA at any of the
three dosage levels examined was seen in either male or female rats (Table 12.4).
In a TSCA 8(e) notification, a rat oral gavage study was conducted with
2,3,3,3-tetrafluoro-2-(heptaflucropropoxy) propionic acid, ammonium salt (CAS
62037-80-3) in which female rats were treated with doses of either 1, 50, or 500 mg/
kg daily for 23Months (Anand 2013). Doses for male rats were 0.1, 1, and 50 mg/
kg and were treated for 24 months. Although actual incidence numbers were not
given, an increase in liver adenomas was reported in female rats given 500 mg/kg.
This result was not reported for females at the two lower doses. Non-neoplastic liver
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12 Carcinogenicity of Perfluoroalkyl Compounds 275

changes were reported in female rats given either 50 or 500 mg/kg. In males,
marginal increases in interstitial cell tumors of the testis and acinar cell tumors of
the pancreas were reported. No increase in liver adenomas was reported. Non-
neoplastic liver lesions including hypertrophy, degeneration, and necrosis were
reported in males given 50 mg/kg but not either 0.1 or 1 mg/kg.

12.1.4 Initiation/Promotion Studies

Both the ammonium and sodium salts of PFOA have been evaluated in a battery of
genotoxicity tests (Butenhoff et al. 2014). Although PFOA is a hepatocarcinogen,
the weight of evidence from these studies supports the position that PFOA is
non-genotoxic and non-mutagenic. Consistent with PFOA being a non-genotoxic
hepatocarcinogen, initiation-promotion studies have demonstrated that PFOA is an
initiator of liver tumors.

In an initiation promotion study, rats were initiated with diethylnitrosamine
(DEN), fed 2-acetylaminofluorene (AAF), and given a single dose of carbon tetra-
chloride (CCL) (Abdellatif et al. 1990). Following this, a group of 12 rats were fed
a diet containing 150 ppm APTO for 7 months. Rats were then sacrificed for micro-
scopic examination of the liver. The incidence of hepatocellular carcinomas was
33 % in the APFO fed rats compared to 0 % in the controls. APFO produced an
increase in hydrogen peroxide (H,0,), catalase, and fatty acid beta-oxidation while
having no effect on glycolate oxidase (leads to production of H,0,) and urate oxi-
dase (an enzyme not found in humans) and serum triglyceride levels. The cancer
effect was attributed in the overproduction of H,O,, an effect commonly seen with
peroxisome proliferators.

Many peroxisome proliferators have been shown as promoters of liver tumors in
rodents including WY-14,643, nafenopin, dichlorophenyl, trichloroethylene, and
DEHP (Cook et al. 1999). As mentioned, it has been hypothesized that DNA damage
is mediated by a reactive molecular species derived from H,0, generated by peroxi-
somes during beta-oxidation of fatty acids. Following PFOA exposure, peroxide is
observed in rat livers as the result of beta-oxidation. Double bond conjugation and
peroxidation of membrane lipids leads to lipofuscin accumulation suggesting oxi-
dative damage.

In a study, a single dose of 200 mg/kg DEN followed 2 weeks later by feeding of
0.03 % AAF for 2 weeks (reference group) or DEN followed 2 weeks later by a
single 2 mg/kg CCl, dose followed by feeding of 150 ppm PFOA for 2 weeks was
conducted (Nilsson et al. 1991). Hepatocellular carcinomas were found in 3 of 12
PFOA-fed rats while (/12 were seen in the reference group. Focal nodules were
seen in both groups, six in the reference group and eight in the PFOA-fed group.
Liver weight increases and well as increase acyl Coenzyme A, dicarbonyl Coenzyme
A, catalase, and decreased triglyceride levels were seen.

A study of rainbow trout with up to 9 months of chronic exposure to PFOA alone
did not produce an increase in liver tumor incidence (Tilton et al. 2008). Trout,
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initiated with aflatoxin B1 in water at 0.01 ppm for 30 min, control water for
3Months, then PFOA at either 200 or 1,800 ppm (equivalent to either 5 or 50 mg/
kg) for 6 months, showed a very weak promotion effect. Aflatoxin alone resulted in
36 % of the trout developing liver tumors. In aflatoxin B1 initiated trout, the liver
tumor incidence in the 200 ppm PFOA group was 34 % while for those given
1,800 ppm PFOA, it was 71 %. The multiplicity of tumors at the higher dose of
PFOA was increased with 10 % having six or more tumors. In this experiment, the
PPAR o agonist DEHP lead to a 100 % liver tumor incidence while no increase was
seen with clofibrate.

12.1.5 Studies on the Mechanism of Action

The liver is the main target for perfluoroalkyl compounds in animals. Liver toxicity
in rodents results from the ability of these compounds to activate the peroxisome-
proliferator-activated-receptor (PPARa), a member of the nuclear receptor super-
family. Studies of PPAR« in various species have shown the rat and mouse to be the
most sensitive species in response to PPARa agonist, hamsters are moderately
responsive, and guinea pigs, primates, and humans are less responsive. Activation
of the receptor in rodents initiates a characteristic sequence of biochemical and
morphological events mainly in the liver. These events include marked hepatocel-
Iular hypertrophy due to an increase in both the number and size of the peroxisomes,
a large increase in peroxisomal fatty acid beta-oxidation, an increase in CYP450
mediated gamma-hydroxylation of lauric acid, and alterations in lipid metabolism.
PPARo regulates lipid homeostasis through the modulation of expression of genes
involved in fatty acid uptake, activation, and oxidation. Both PFOA and PFOS are
relatively weak ligands compared to the naturally-occurring long-chain fatty acids
such as linoleic and alpha-linoleic acid (Vanden Heuvel et al. 2006).

PFOA appears to induce liver tumors via binding to the PPARo nuclear receptor
resulting in peroxisome proliferation and increased liver mitogenesis (Biegel et al.
2001; Maloney and Waxman 1999; Pastoor et al. 1987). The key events following
PPAR« ligands activating PPARo involve regulation of the transcription of genes
involved in peroxisome proliferation, cell cycle/apoptosis, and lipid metabolism.
This leads to perturbations in cell proliferation, apoptosis, and peroxisome prolif-
eration. Suppression of apoptosis along with a stimulation of cell proliferation
allows DNA-damaged cells to persist and proliferate giving rise to preneoplastic
foci. Clonal expansion then leads to tumor formation.

A number of events have an influence on this process. Peroxisome proliferation
may lead to oxidative stress which could cause indirect DNA damage or by stimula-
tion of cell proliferation. PPARa ligands also inhibit gap junction intercellular
communication and stimulate non-parenchymal hepatic Kupffer cells, both of
which could induce cell proliferation. The evidence for these key events from
PPAR« activation to selective clonal expansion to yield liver tumors is quite
convincing (Klaunig et al. 2003).

ED_002974_00000598-00285



12 Carcinogenicity of Perfluoroalkyl Compounds 277

PFOA has been demonstrated to activate PPAR«a (Pastoor et al. 1987; Maloney
and Waxman 1999). In PPARa knockout mice, PFOA did not increase beta-
oxidation unlike that readily produced in wild-type mice (Yang et al. 2002). PFOA
induction of hepatomegaly, peroxisomal beta-oxidation, microsomal 1-acylglycero-
phosphocholine acetyltransferase, and cytosolic long-chain acyl CoA hydrolase can
be blocked in castrated male rats showing the effect to be related to the elimination
rate (Kawashima et al. 1995). Several key endpoints which could be the initiating
effect leading to liver tumors, (and possibly pancreas and testicular tumors) were
shown to be modified by PFOA (Liu et al. 1996). These include increasing liver
weight, hepatic beta-oxidation, hepatic aromatase (CYPI19A1), and hepatic total
cytochrome P450. These changes were observed in the 2-year rat study with PFOA
(Biegel et al. 2001).

The induction of Leydig cell mmors by PFOA is postulated to be due to a
hormonal mechanism whereby PFOA inhibits testosterone biosynthesis and
increases serum estradiol levels via induction of hepatic aromatase activity (Biegel
et al. 1995; Cook et al. 1992; Liu et al. 1996). This mechanism appears to be influ-
enced and perhaps mediated by PPARa. The induction of pancreatic acinar cell
tumors is postulated to be secondary to the liver effects, specifically a sustained
increase in plasma cholecystokinin (CCK) secondary to reduced bile flow or altered
bile acid composition resulting in an indirect inhibition of trypsin. An indirect inhi-
bition of trypsin by WY-14,643 (a strong PPAR« activator) results in an increase in
CCK levels (Obourn et al. 1997).

Like some other PPARa agonists, PFOA induces hepatocellular adenoma,
Leydig cell adenomas, and pancreatic acinar cell adenomas in rats. Although
humans possess PPAR« at sufficient levels to mediate the hypolipidemic response
to therapeutic fibrate drugs, there are enough qualitative and quantitative differences
between the response of the human liver to PPARo agonists relative to the response
of the rat liver. These differences include gene promoters, receptor activities, and
receptor levels that make the mode of action for liver tumors unlikely to be operative
in humans. There is inadequate evidence to link PPARa and the induction of either
Leydig cell adenomas or pancreatic acinar cell adenomas. Additionally, there is
insufficient evidence to link other mode-of-actions with PFOA-induced testicular or
pancreatic adenomas.

12.1.6 Ancillary Information

The occurrence of liver tumor with two other peroxisome proliferators, WY 14643
and DEHP, was studied in both in wild-type and PPAR« null mice (Tto et al. 2007).
Mice fed DEHP at 12,000 ppm for 6 months developed liver enlargement, an
increased number of peroxisomes, and eosinophilia, a series of findings not seen in
the PPARa null mice. In this report, groups of Sv/129 mice, either null or wild type,
were fed either 100 or 500 ppm DEHP from 3 weeks of age to 23Months. The
incidence of hepatocellular adenomas (and possibly carcinomas) was slightly
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increased in the null mice. Inflammatory cell infiliration and 8-OHAG levels
(oxidative stress) were higher in null mice than wild type- both elevated from
controls suggesting that oxidative stress may lead to induction of inflammation,
expression of proto-oncogenes, and an increase in tumors in null mice. Thus, differ-
ent mechanisms were shown to induce hepatocellular tumors in wild-type and
PPAR« null mice (Ito et al. 2007; Takashima et al. 2008). The mechanistic hypoth-
esis included that either oxidative stress from increased beta-oxidation induced by
peroxisome proliferators produces excess ROS leading to DNA damage and cancer
or an imbalance in hepatocyte growth control reflected by increased cell prolifera-
tion and suppression of apoptosis disrupting hepatocyte growth control. The authors
concluded that most likely both contributed.

To look at the activity of aromatase as a mechanism for the increased estradiol
observed, rats were given oral gavage doses of 0, 0.1, 2, 20, or 40 mg APFO/kg for
14 days with a pair-fed group matching the top dose (Liu et al. 1996). Both testicu-
lar and hepatic aromatase activity along with body weights, liver weights, micro-
somal protein, and estradiol were measured. Aromatase activity in the liver was
increased by up to 16 times but no significant effect on this testicular enzyme was
seen. Body weight decreases were seen as well as increased liver weight along with
increased hepatic beta-oxidation, cytochrome P450 activity, and protein content of
microsomes. A doubling of serum estradiol was seen along with a linear correlation
between serum estradiol and hepatic aromatase.

12.1.7 PFOA as an Anti-tumorigenic Agent

Some PPARa ligands have been shown to possess anti-tumorigenic properties, such
as suppression of growth of several types of human cancer cells in vifro and inhibi-
tion of carcinogenesis in vivo making PPARa a potential candidate for cancer
therapy (Pozzi and Capdevila 2008). PPAR« ligands such as fibrates, which cause
tumors in rodents, are commonly used therapeutically in humans with no evidence
of carcinogenicity (Peters et al. 2003).

A Phase 1 clinical trial was conducted to assess the tolerability, safety, and phar-
macokinetics of APFO administered orally once a week to human patients
(Macpherson et al. 2010). A total of 42 patients, who had both advanced refractory
solid tumors and clinically normal liver and kidney function were enrolled. Dose
escalation, starting with a dose of 50 mg once a week followed a standard 3+3
design until dose-limiting toxicity was observed in two or more patients. The largest
group of patients presented with colorectal cancer (N =16) with pancreas, esopha-
geal, and kidney cancers, each represented by two of more patients. Doses of up to
1,200 mg were tested without producing clinical changes in either the liver or
kidney; thus, the goal of finding a dose-limiting toxicity was not attained. As a prac-
tical matter, APFO was given in 50 mg capsules so those given the highest dose
tested needed to take 24 capsules orally. Although the study was not designed to
evaluate efficacy, stable disease at 12 weeks or greater was observed in eight of the
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first 37 patients enrolled and included a case with anaplastic thyroid at 40 weeks,
one with pancreatic cancer at 35 weeks, and one with cervical cancer at 34 weeks.
Further studies have not been conducted at this time.

The proposed mechanism for the anti-tumorigenic response is through inhibition
of PIM-1 kinase. PIM proteins belong to a family of serine and threonine kinases
which play a role in cell cycle regulation and have a potent anti-apoptotic activity.
Increased expression of PIM kinase is associated with malignant subtypes of
leukemia and lymphoma (Adam et al. 2006; Cohen et al. 2004; Brault 2010) and a
number of solid tumors including pancreatic (Li et al. 2006; Chen et al. 2009;
Reiser-Erkan et al. 2008), colorectal (Popivanova 2007), esophageal (Beier et al.
2007), and prostate (Chen et al. 2005; Mumenthaler et al. 2009; Roh et al. 2008)
cancers.

APFO has been tested in four human tumor xenograft models, HT-29 (colon),
PC3 (prostate), PANC-1 (pancreatic), and HepG2 (liver) (Elcombe et al. 2011).
Anti-tumor effects were detected in all models. No significant toxicity was observed
in the treated mice although there was liver weight enlargement and some evidence
of changes in liver enzyme function. The effect of PFOA on HT-29 (colon adeno-
carcinoma) tumors was assessed in nude mouse xenografts. Mice were inoculated
with a tumor cell suspension on each flank and tumors were allowed to grow for
16 days. APFO was given by intraperitoneal injection of 25 mg/kg 3 times a week
for 4 weeks. The HT-29 tumor volumes at 30 days were 280 mm® in the saline
injected controls compared to 175 mm?® in the APFO treated mice. Relatively few
animals were used in each group but a suggestion of anti-tumor effect was noted. In
a parallel experiment using a prostate tumor cell line PC3, APFO intraperitoneal
doses of either 5, 15, or 25 mg/kg were used. All of the APFO mice showed
decreased tumor volume with a volume of 10 mm’® in the highest APFO group
compared to 50 mm? in the saline-treated controls.

Two other xenograft models were tested with similar results. Using the human
pancreatic cell line PANC-1 (a slow growing tumor in vivo), a fourfold increase in
size over a 90-day test period was seen in the controls compared to a 2.5-fold
increase in mice receiving 25 mg/kg APFO. Tumor weights were 0.5 g in the APFO-
treated mice compared to 1.2 g in the controls. A lesser response was seen in a test
using a xenograft model of liver carcinoma in cell line HepG2. After 24 days of test,
APFO-treated mice had a tumor volume of 1,000 mm? and a weight of 1.5 g while
the controls had a volume of 1,200 mm® and a weight of 1.8 g.

12.2 Studies Involving Exposed Humans

12.2.1 General Epidemiologic Concepts

For the purpose of this review, risk estimates reported by epidemiologic studies are
described as measures of potential associations between cancer, either as all cancers
or for specific diagnostic types, and PFOA and other perfluorinated alkyl acids
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(PFAAs) including PFOS. For mortality studies, typically reported for occupational
cohorts, the Standardized Mortality Ratio (SMR) is estimated as the ratio of
observed number of cancer deaths among a study group relative to an expected
count of cancer deaths estimated from a defined reference population rate
(Checkoway et al. 2004). In addition, relative risk (RR) estimates evaluate the
probability of a cancer death or diagnosis among those assigned to a higher expo-
sure category relative to those persons classified as less exposed. A related measure
of RR is the odds ratio (OR) which is a measure of association based on the same
relative comparison of exposure groups and describes the odds of having cancer
among exposed cases relative to the odds of not having cancer among exposed con-
trols (Gordis 2009). Finally, several studies report the hazard ratio (HR) which is
estimated using a proportional hazards (PH) model, usually the Cox PH model. The
HR is the ratio of the rate of cancer events between different levels of exposure
using time to the event (i.e., cancer diagnosis or death) as the time-scale variable.
An increased HR indicates an earlier occurrence of the event among the exposed
group relative to the reference group assuming that the underlying hazard rates are
proportional for the two groups (Kleinbaum 1996).

For all measures of risk, estimates are presented with the reported 95 % confi-
dence interval (CI) as a standard convention. In addition, statistical significance of
risk estimates is interpreted based on the lower and upper values of the 95 % CI and
the corresponding p-value for the association. Risk estimates measuring association
between exposure and cancer are considered to be significant when the 95 % CI
does not include 1.0 in its range, consistent with p<0.05. Associations that have a
reported 95 % Cl that does include the value 1.0 (i.e., p>0.05), cannot exclude
random chance as an explanation for the measured association. Many published
studies emphasize observed increased risk estimates that are not statistically signifi-
cant when describing and interpreting results; however, these estimates are not
indicative of a valid, non-random increase in risk any more than non-significant risk
estimates less than 1.0 point to a possible lowering of risk associated with
exposure.

Studies may categorize exposure for study participants by defining a classifica-
tion approach based on subjective levels of exposure potential or by applying a
quantitative distribution such as quartiles. These studies may also present a test for
trend, usually indicated by a p-value for an analysis of the ordered categorical risk
estimates. In many cases, the trend test is based on the assumption of a monotonic
relationship between exposure category and outcome as evaluated by a linear regres-
sion model. The p-value from such tests conflates the test of significance for the
slope coefficient from a regression model with an assumed monotonic dose-response
without estimation of the actual exposure-response relationship at biologically
plausible exposure values (Maclure and Greenland 1992). In particular, this
approach is problematic when applied to a naive method such as percentile classifi-
cation (i.e., quartiled exposure groups) when exposure is within a very narrow range
of values (Greenland 1993). Caution should be taken into account when interpreting
studies that report non-significant categorical associations but rely on a significant
trend test p-value for inference of an association.
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12.2.2 Occupational Studies - PFOA

A number of studies have looked at the potential carcinogenic effects of PFOA in
exposed persons, particularly exposed chemical workers. These studies include
workers based in manufacturing plants using the chemical for industrial purposes
with occupational exposure to PFOA estimated by a job exposure matrix (JEM)
approach. The occupational cohorts studied have involved industrial facilities of the
3M Corporation (manufacturing plants at Cottage Grove, Minnesota and Decatur,
Alabama), and DuPont (a polymer production facility, the Washington Works plant,
located in Washington, West Virginia). The DuPont plant primarily used APFO in
polyethylene production processes. A separate cohort study for tetrafluoroethylene
(TFE) synthesis and polymerization workers comprised workers at six facilities
operated by four companies including employees from the DuPont Washington
Works facility. In addition, there are a series of studies among a community popula-
tion who were residents of 6 water districts in the Mid-Ohio River Valley in Ohio
and West Virginia exposed to drinking water contaminated with PFOA. Exposure
assessment for the Mid-Ohio River Valley community studies included both
measurement of concentrations in blood serum samples as well as cumulative esti-
mates of drinking water exposure determined by environmental fate and transport
modeling. A third group of studies include individual population-based studies of
various human cancers among persons with general background levels of exposure
to PFOA as measured by serum concentrations taken from biologic samples.

A proportional mortality analysis among 3M plant workers exposed to industrial
flnorochemicals including primarily PFOA and PFOS at the Cottage Grove plant
was reported (Ubel et al. 1980). A total of 3,688 employees employed during the
years 1948 to 1978 were included in the cohort and 180 deaths were recorded
through the end of follow-up (159 males and 21 females) of which 177 were
matched with death certificates providing information as to underlying cause. The
number of female deaths was considered to be too few for meaningful statistical
analysis. Among male workers, observed mortality counts agreed with expected
numbers for specific causes of death due to cancer. This study provides limited evi-
dence to evaluate the potential association between PFOA and PFOS exposures and
cancer mortality with no notable increases observed among fluorochemical workers
at the Cottage Grove plant.

A subsequent retrospective cohort mortality involving 2,788 males and 749
females employed at the Cottage Grove plant from 1947 to 1983 was reported
(Gilliland and Mandel 1993). Inclusion in the PFOA-exposed category was based
on any job history in the Chemical Division for 1 month or more while the unex-
posed category comprised workers who either never worked in Chemical Division
or did so for less than 1 month. Vital status was ascertained through 1989 for the
cohort and expected mortality numbers were estimated from United States (U.S.)
and Minnesota population rates. For all female employees, the overall cancer SMR
was 0.71 (95 % CI: 0.42, 1.14) with no significant increase for any specific cancer
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type. The overall cancer SMR for all male employees was 1.05 (95 % CI: 0.86,
1.27) with no significant increase for any single cancer type.

Among the 1,339 male workers who worked at least 1 month or more in the
Chemical Division, no significantly increased SMRs were reported for cancers of
the gastrointestinal tract including specific results for the colon and pancreas, respi-
ratory tract including the Tung, testis, bladder, or lymphopoietic system including
leukemia. The authors note that for prostate cancer deaths, workers in the Chemical
Davision had an SMR of 2.0 (95 % CI: 0.6, 4.6) for four observed deaths compared
to approximately two deaths that were expected based on Minnesota White male
mortality rates. Among these four cases, only one of the employees appears to have
worked directly in the PFOA production building (Olsen et al. 1998).

Gilliland and Mandel (1993) included the use of an internal cohort of non-Chem-
ical Division workers considered to be non-exposed as a comparison group to mini-
mize the potential for the healthy worker effect, a bias widely noted when observed
mortality is lower for occupational cohorts relative to expected mortality based on
general population rates (Monson 1986). The authors applied a proportional haz-
ards regression model to estimate the HR for all cancer deaths and for prostate
cancer deaths among male employees for four occupational metrics: year and age of
first employment, duration of employment, and months spent in the chemical divi-
sion. Although, all cancer deaths were not significantly increased with increasing
number of months in the Chemical Division, the rate of prostate cancer death was
significantly increased for each month spent in the Chemical Division. The estimate
of the HR for each year in the chemical division associated with prostate cancer
mortality was 1.13 (95 % CI: 1.01, 1.27); however, the authors note that this finding
is based on a small number of cases and could be biased by unmeasured confound-
ers as occupational exposure to PFOA or PFOS was not estimated for any worker.

An updated mortality study in a cohort of 3,993 employees at the Cottage Grove
plant was reported (Lundin et al. 2009). Three general categories of PFOA exposure
were identified: ever definite exposure (primarily jobs in electrochemical fluorina-
tion), probable occupational exposure (jobs in other Chemical Division areas where
exposure was possible but assumed to be lower and transient), and no or minimal
exposure (jobs in the Non-Chemical Division of the plant). No increase in the SMR
for deaths from all cancers was seen in any of the three groups. The all cancer SMRs
were 0.9 (95 % CI: 0.5, 1.4), 0.9 (95 % CI: 0.8, 1.1), and 0.8 (95 % CI: 0.6, 1.0) in
the ever definite exposure group, the probable exposure group, and the minimal
exposure group, respectively. SMRs for cancers of the biliary passages and liver;
pancreas; respiratory cancers of the trachea, bronchus, and lung; and bladder and
other urinary organs showed no evidence of exposure-related associations. The
prostate cancer SMRs were 2.1 (95 % Cl: 0.4, 6.1), 0.9 (95 % CI: 04, 1.8), and 0.4
(95 % CI: 0.1, 0.9) in the ever definite exposure group, the probable exposure group,
and the minimal exposure group, respectively.

Lundin and co-authors (2009) created additional exposure categories: high
exposure (included workers with definite exposure for 6 months or more), moderate
exposure (included workers with probable exposure or those with definite exposure
for less than 6 months), and low exposure (included workers primarily in the
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nonchemical division of the plant). Prostate cancer mortality was significantly
increased among workers in the high exposure group (HR=6.6, 95 % CI: 1.1, 37.7,
two deaths) with a non-significant increase estimated for the moderate exposure
group (HR=3.0, 95 % CI: 0.9, 9.7, ten deaths) when compared to the low exposure
group (four deaths). For the combined high and moderate exposure groups, the HR
was 3.2 (95 % CI: 1.0, 10.3, 12 deaths) when compared to the low exposure group.
Interpretation of the relative risk estimates for prostate cancer mortality is compli-
cated by a deficit of prostate cancer mortality in the low exposure group which was
assigned as the referent group. Workers in this exposure category had an abnormally
low occurrence of prostate cancer death as indicated by a significantly reduced
SMR when compared to expected prostate cancer deaths based on the Minnesota
male population (SMR=0.4, 95 % CI: 0.1, 0.9). The authors cautioned that the
prostate cancer risk should be elucidated using incident cases, rather than deaths
from the disease.

In the most recent report from this cohort, both cancer mortality and incidence
were assessed for two groups of 3M workers comprising 9,027 total employees
(Raleigh et al. 2014). The cohort included 4,668 workers with potential occupa-
tional exposure to PFOA at the Cottage Grove plant and 4,359 workers with no
occupational exposure to PFOA at a non-related production facility in St. Paul,
Minnesota. Mortality and cancer incidence for this combined cohort were determined
from linkage of workers with the National Death Index and with cancer registries
for the states of Minnesota and Wisconsin. Industrial hygiene data and expert evalu-
ation were used to create a task-based JEM to estimate cumulative PFOA exposure.
SMRs were estimated using expected mortality numbers based on Minnesota
population mortality rates. HRs for time-dependent cumulative PFOA exposure
were estimated from an extended Cox PH model. Outcomes of a priori interest
included mortality and incidence for cancers of the liver, pancreas, testes, kidney,
prostate, and breast.

Observed mortality counts in the PFOA-exposed cohort were less than the
numbers expected for deaths based on Minnesota residents resulting in SMRs less
than 1.0 for all listed cancers (Table 12.5). When assessing selected causes of deaths
based on cumulative PFOA exposure categorized by quartiles, the HRs for mortality
from cancer outcomes of interest did not show an association with increasing expo-
sure. Similarly, there was little evidence that incident cancers were associated with
PFOA exposure (Table 12.6). Compared to the non-exposed population of workers
from the St. Paul facility, there were no significant HRs observed for incident
cancers in the combined two highest exposure quartiles of PFOA among workers at
the Cottage Grove plant. No association was observed between PFOA exposure and
incident cases of kidney, prostate, or breast cancer when analyzed by quartile of
cumulative exposure. The authors conclude that this analysis did not support an
association between occupational exposure and cancer mortality or incidence but
caution that for some of the cancers of interest, the study had limited ability to
detect a precise association due to small numbers of cases.

Cancer mortality among workers at the DuPont Washington Works plant has
been reported by Leonard et al. (2008) who conducted a study with the primary
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Table 12.5 Standardized mortality ratios (SMR) for selected causes of death for the Cottage
Grove and Saint Paul cohorts

Cottage Grove plant Saint Paul plant
Cause Obs SMR (95 % CI) Obs SMR (95 % CI)
All causes 1,125 0.85 (0.80, 0.90)* 1,829 0.98 (0.94, 1.03)
All cancers 332 0.87 (0.78,0.97)* 514 1.04 (0.95, 1.13)
Liver cancer 8 0.81 (0.35,1.59) 7 0.55(0.22, 1.14)
Pancreatic cancer 18 0.85 (0.50,1.34) 30 1.09 (0.74, 1.56)
Prostate cancer 24 0.83 (0.53,1.23) 48 1.03 (0.76, 1.37)
Kidney cancer 6 0.53 (0.20, 1.16) 18 1.23(0.73, 1.95)
Breast cancer 11 0.82 (0.41, 1.47) 15 1.39(0.78, 2.29)
Bladder cancer 8 0.89 (0.38, 1.76) 8 0.62 (0.27, 1.22)
Diabetes mellitus 2 0.76 (0.50,1.11) 64 1.42 (1.09, 1.81)*
Ischaemic heart disease 248 0.84 (0.74, 0.95)* 444 0.95 (0.87, 1.05)
Cerebrovascular discase 57 0.81 (0.61, 1.05) 112 1.02 (0.84, 1.23)
Chronic renal discase 14 1.09 (0.60, 1.84) 13 0.72 (0.38, 1.24)

From Raleigh et al. (2014)
*Statistically significant (p <0.05)

Table 12.6 Hazard Ratios for selected cancers comparing APFO exposure quartiles to the referent
population

Exposure quartile
Referent Q1 Q2 Q3 Q4
HR(95 % HR(95 % HR(95 % HR(S5 % HR (95 %

Cancer Obs | CD) Obs i CDH Obs | CD Obs | ChH Obs  CD
Prostate {253 i1 (referent) {42 | 0.80 42 10.85 49 0.89 55 111
cancer (0.57, 1.11) (0.61, 1.19) (0.66,1.21) (0.82, 1.49)
Kidney 19 i1 (referent) | 4 §1.07 4 11.07 4 1098 4 073
cancer (0.36, 3.16) (0.36, 3.17) (0.33,2.92) (0.21,2.48)
Pancreatic : 15 1 (referent) | Combined with 1 0.13 Combined with 9 1.36
cancer Q (0.02,1.03) | Q4 (0.59,3.11)
Bladder 43 1 (referenty | 7 (0.81 6 0.78 15 1 1.50 12 1.66
cancer (0.36, 1.81) (0.33, 1.85) (0.80, 2.81) (0.86, 3.18)
Breast 28 i1 (referent) : 8 i0.36 8 0.65 14 1.47 4 :0.85
cancer (0.16, 0.79) (0.29, 1.42) (0.77,2.80) (0.29, 2.46)

From Raleigh et al. (2014)
Referent population = Saint Paul, MN plant
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Table 12.7 Cancer mortality for DuPont Washington works employees compared to three external
reference populations

WwW

cohort | US population WYV population DuPont region I workers
Cause of death | O E SMR | CI E SMR i CI E SMR | CI
All malignant | 234 315 1074 10.650.84% 1340 10.69 {0.60,0.78% 1229 :1.02 {089 116
neoplasms
Liver 8 8.1:0.99 1043,1.96 6.9 | 1.15 {050,227 55145 {063,286
Pancreas 11 1541071 1036,1.28 13.7 10.80 040,143 112 1098 1049, 176
Breast 2 3.7 055 1007, 197 3.5 057 1007205 2.8:0.70 ;009,254
Prostate 12 2321052 1027,091% 209 {058 {0.30,1.00 184 :0.65 1034, 1.14
Testes 1 1.2:0.87 :0.02,4.84 1.3 1076 :0.02,4.22 0.6 {170 :0.04,946
Kidney 12 79152 {078 2.65 7.9 {151 {078, 2.64 6.6 | 1.81 {094, 3.16
Thyroid/other 3 1.013.12 (064,912 1.1 12.86 10.59,8.35 051629 | 1.30, 18.37*
endocrine
glands

From Leonard et al. (2008)
O observed, £ expected, SMR standardized mortality ratio, CI = 95 % confidence interval
*Statistically significant (p <0.05)

objective to determine if mortality from ischemic heart disease was increased in a
cohort based on a previous association between PFOA exposure and increased
lipids (Sakr et al. 2009). The secondary objective of the study was to examine a
broad range of other causes of mortality including cancer outcomes. The cohort
included 6,027 individuals working at the plant from January 1, 1948 through
December 31, 2002, the end date for mortality ascertainment. SMRs were estimated
based on three reference population rates: the U.S. population, the West Virginia
population, and an eight-state regional population of over 74,000 DuPont employ-
ees with no work history at the Washington Works facility. Similar to retrospective
cohort study of the Cottage Grove plant, all Washington Works employees were
considered to have PFOA exposure even though only 23 % of 1,025 workers who
participated in a previous health survey had work assignments in PFOA areas of the
plant (Sakr et al. 2007).

All cancer mortality was significantly lower among the workers compared to the
U.S. and the West Virginia population rates and was no different from the DuPont
employee reference rates (Table 12.7). For specific cancer mortality outcomes, no
significant increases were reported for observed deaths due to liver, pancreas,
testicular, prostate, or breast cancers. For kidney cancer (12 deaths observed through
2002), SMRs for workers were 1.52 (95 % CI: 0.78, 2.65) when compared to the US
reference rate; 1.51 (95 % CI: 0.78, 2.64) compared to the West Virginia reference
rate; and 1.81, (95 % CI: 0.94, 3.61) compared to the DuPont regional worker
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reference rate. Bladder cancer mortality (seven deaths observed through 2002) was
similar to expected numbers based on the U.S. and West Virginia population rates
and resulted in an SMR of 1.30 (95 % CI: 0.52, 2.69) when compared to the DuPont
regional worker reference rate. Of interest is that the SMR for prostate cancer was
significantly decreased compared to the U.S. population (SMR=0.52, 95 % CIL:
0.27, 0.91), and prostate cancer SMRs were reduced compared to West Virginia
residents (SMR=0.58, 95 % CIL 0.30, 1.00) and the DuPont regional employees
(SMR=0.65, 95 % CI: 0.34, 1.14).

An update of mortality ascertainment for the Washington Works cohort extended
through 2008 was reported by Steenland and Woskie (2012). The updated study
observed an increase in the total number of deaths in the cohort from 806 to 1,084
during the six additional years of follow-up through December 31, 2008. This
update also analyzed cancer mortality based on occupational exposure to
PFOA. Using a job exposure matrix developed by Kreckmann et al. (2009), workers
were assigned to one of eight job category and job group combinations for estima-
tion of cumulative PFOA exposure (Woskie et al. 2012). Modeled serum PFOA
levels among workers in each job category and group combination were correlated
with measured levels by job category overall and across time to derive cumulative
exposure estimates for 5,791 workers with sufficient work history records.
Cumulative exposure was categorized by a quartile distribution with the lowest
quartile assigned as the referent category for analyses.

The SMR for total cancer mortality did not differ significantly for plant workers
in any quartile of estimated cumulative serum PFOA when compared to the DuPont
regional employee reference rates (SMR=0.93, 95 % CI: 0.83, 1.04) and was sig-
nificantly lower than expected based on the U.S. reference rate (SMR=0.74, 95 %
CI: 0.66, 0.83). Although six additional years of mortality ascertainment were
added, the number of kidney cancer deaths (12) was equal to the number reported
by Leonard et al. (2008) as no kidney cancer deaths occurred among cohort mem-
bers from 2003 to 2008. The SMR for kidney cancer among all workers combined
was 1.28 (95 % CI: 0.66, 2.24) while the SMR for the highest quartile (quartile 4)
of camulative PFOA exposure was significantly increased (SMR = 2.66, 95 % CI:
1.15, 5.24) with no significant increase observed for the other exposure quartiles
(quartiles 1, 2, and 3). For mesothelioma, a significant positive exposure-response
trend was observed when compared to other DuPont regional workers based on six
deaths (SMR =2.85, 95 % CI: 1.05, 6.20) with five deaths observed in the highest
quartile of PFOA exposure (SMR=6.27, 95 % CI: 2.04, 14.63). The authors state
that the increased SMR for mesothelioma did not appear to be specific to PFOA
exposure and suggested that it was the result of co-exposure to asbestos among
workers that was highly correlated with estimates of cumulative PFOA exposure.

In addition, Steenland et al. (2015) presented additional analyses based on medi-
cal record review among 3,713 workers at the Washington Works facility. Eighteen
disease outcomes with incident cases greater than or equal to 20 were analyzed.
Among the four incident cancer outcomes reported, prostate cancer showed a posi-
tive non-significant trend (p-value for categorical trend test=0.11, 129 cases).
Bladder cancer had a significant negative trend such that higher PFOA exposure
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Table 12.8 Mortality by cumulative exposure to APFO (unit—years) among 4,773 male workers
ever exposed to TFE, 1950-2008

Cumulative exposure to APFO (unit-years)

Cause of death

Medium

Never exposed Low (<16) (16-138) High (139+)

Obs/Exp Obs/Exp Obs/Exp Obs/Exp

SMR (95 % CI) SMR (95 % CI) SMR (95 % CI) SMR (95 % CI)
All causes 101/132.3 178/243.3 178/220.9 178/225.2

0.76 (0.62,0.93)* 0.73 (0.63, 0.85)* | 0.81 (0.69, 0.93)* :0.79 (0.68, 0.92)*
All cancer 28/40.1 51/65.8 53/65.4 55/70.3

0.70 (0.46,1.01) :0.78 (0.58, 1.02) :0.81 (0.61, 1.06) 0.78 (0.59, 1.02)
Esophageal 0/1.3 4/2.5 4/2.6 3/2.6
cancer - 1.62 (0.44,4.14) 11.54(042,3.93) 1.16(0.24, 3.39)
Liver cancer 1/1.4 1/1.4 2/1.6 4/1.9

0.72 (0.02,4.02) :0.70(0.02,3.87) :1.25(0.15,4.52) 2.14(0.58, 5.49)
Pancreatic 3/1.8 0/3.2 4/3.1 6/3.3
cancer 1.66 (0.34,4.84) - 1.30 (0.35,3.33) 1 1.84 (0.67, 4.00)
Lung cancer 10/13.3 20/21.9 16/21.3 13/23.9

0.75 (0.36, 1.39) 10.91 (0.56, 1.41) 10.75(0.43,1.22) :0.54 (0.29, 0.93)*
Kidney and 0/1.0 3/1.9 3/2.0 4/2.0
other urinary - 1.57 (0.32,4.59) 11.50(0.31,4.39) 12.00(0.54,5.12)
organs
cancer
Leukemia 1/1.3 4/2.4 3/2.2 4/2.2

0.79 (0.02,4.40) 11.64(0.45,4.20) 11.35(0.28,3.94) 11.85(0.50,4.74)

Reference: National Rates
From Consonni et al. (2013) supplement
*Statistically significant (p <0.05)

quartiles had a lower relative risk for this incident disease (p-value for log cumulative
exposure trend=0.04, 29 cases). No significant trend tests were reported for either
colorectal cancer (41 cases) or melanoma (41 cases) (Steenland et al. 2015).

A retrospective cohort mortality study including 5,879 male workers from six
tetrafluoroethylene (TFE) production sites in Europe and the U.S. was reported
(Consonni et al. 2013). Occupational TFE exposure was the main focus with
cumulative exposure to PFOA estimated using an exposure matrix that was highly
correlated with TFE exposure estimates (Sleeuwenhoek and Cherrie 2012). The
TFE study sites differed for duration of ascertainment period with an average of
25 years of follow-up overall. Among 4,205 workers classified as ever having occu-
pational exposure to PFOA among those workers with TFE exposure, the SMR for
all cancer deaths was significantly reduced (SMR=0.79, 95 % CI: 0.67, 0.92) com-
pared to an expected number estimated from national rates (Table 12.8 — Consonni

ED_002974_00000598-00296



288 G.L. Kennedy and J.M. Symons

et al. 2013 supplement). For workers categorized in the highest tertile of cumulative
PFOA exposure, there was no significant increased SMR for cancers of the esopha-
gus, liver, pancreas, lung, or kidney, or for leukemia. The authors conclude that no
exposure-response trend was observed for any of these outcomes and the study was

limited by the inability to separate the potential effects from either PFOA or TTE.

12.2.3 Occupational Studies — PFOS

All available epidemiologic studies of cancer risk and occupational exposure to
PFOS have been conducted among the employee cohort at a 3M facility in Decatur,
Alabama that manufactured PFOS-based fluorochemicals in its chemical division
from 1961 to 2002. Because the Decatur plant primarily manufactured PFOS-based
chemicals, it has been studied only with respect to PFOS exposure; however, PFOA
is a residual by-product of PFOS production. Therefore, chemical workers were
potentially exposed to PFOA as well as other chemicals (Sigurdson et al. 2003).

A retrospective cohort mortality study of individuals who worked at least 1 year
at the 3M facility in Decatur, Alabama was reported (Alexander et al. 2003). The
site contained two plants, one producing specialty chemicals and the other making
a specialty film. Perfluorooctanesulfonyl fluoride (POSF) is the major fluorochemi-
cal produced at this plant. POSF-based products can be metabolized to PFOS in
humans. A cohort of 2,083 employees with 1-year or more of employment was clas-
sified as either non-exposed, low exposed, or high exposed based on biological
monitoring data for PFOS and work site. A previous study reported that the mean
concentration of PFOS in chemical plant workers was approximately 900 ppb while
the mean PFOS concentration in film plant workers was approximately 100 ppb.
The authors assigned all workers in the film plant to the non-exposed group while
the low and high exposure groups included workers at the chemical plant catego-
rized by their potential for exposure to POSF based on job role.

A total of 39 cancer deaths occurred in the cohort through 1997. For all three
groups, observed cancer mortality was lower than that expected based on general
population rates. SMRs for all cancer deaths were 0.84 (95 % CI: 0.50, 1.32, 18
deaths), 0.52 (95 % CI: 0.19, 1.44, 6 deaths), and 0.73 (95 % CIL: 0.41, 1.21, 15
deaths) for the high, low, and non-exposed groups, respectively. For bladder cancer,
three deaths occurred in the cohort (SMR =4.81, 95 % CI: 0.99, 14.06) with all three
cases having at least 1 year in a high exposed job. The authors conclude that bladder
cancer mortality in this study could not be attributed to fluorochemical exposures
due to the small number of cases and the possibility for unknown exposures to other
substances that are potential bladder carcinogens either at work or due to lifestyle
factors such as smoking (Alexander et al. 2003).

A follow-up study was conducted to determine whether bladder cancer mortality
among workers with high potential workplace exposure to POFS-based fluoro-
chemicals was representative of the overall bladder cancer experience of the cohort
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(Alexander and Olsen 2007). Exposures to PFOS were estimated from work history
and weighted using biological monitoring data. Categories of exposure included: no
direct workplace exposure (serum PFOS concentrations between 100 and 290 ppb),
job assignments with low potential for exposure (serum concentrations between 390
and 890 ppb), and job assignments with high potential for exposure (serum concen-
trations between 1,300 and 1,970 ppb). Mortality ascertainment was extended
through 2002 with two additional deaths due to bladder cancer observed. In addition
1,400 of 1,845 cohort members responded to a questionnaire administered in 2002
with six bladder cancer cases reported. Of these, two were validated by medical
records and four were not confirmed due to lack of consent for medical record
review. Combining the 11 bladder cancers for an incidence rate analysis, the authors
estimated a standardized incidence ratio (SIR) for all workers of 1.41 (95 % CI:
0.79, 2.33). No SIR based on stratification by exposure potential and duration of
employment in a high exposure group was significantly increased. The authors
conclude that the incidence of bladder cancer in workers is similar to that of the US
population.

Health claims data for 652 chemical division employees (PFOS exposed) were
analyzed against claims for 659 film division workers (non-PFOS exposed) at the
Decatur plant (Olsen et al. 2004). Health claims were grouped into episodes of care
defined as sets of one or more claims records which could be categorized into a
discrete disease diagnosis. Two analyses were conducted: one comparing the all
chemical workers to all film workers, and a second analysis of 211 workers with
high exposure jobs in the chemical division compared to 345 workers who had
similar jobs in the film division without POSF exposure for at least 10 years.
Episodes of care were compared to similar health claims for approximately 20,000
manufacturing workers of the 3M Company in the U.S. No difference in the number
of episodes of care per year was seen for those in the chemical division (average 2.7
per year) compared to those in the film division (average 3.0 per year). Relative risk
(RR) was estimated for the ratio of episodes of care for specific diagnoses. For pros-
tate cancer, five episodes were seen in the chemical division compared to 3.1
expected based on company-wide rates. The film division had one prostate cancer
episode compared to 4.7 expected. Overall, the results of this study appear to show
that the risk of cancer in the chemical division workers exposed primarily to PFOS
was no different than that of the film plant workers. For bladder cancer, no episodes
of care were recorded for chemical division workers during the period of the study.

A separate study of self-reported health conditions including cancer diagnoses
among 1,400 workers at the Decatur facility was conducted for responses from the
2002 questionnaire (Grice et al. 2007). PFOS-exposure groupings were based
assignments made previously (Alexander and Olsen 2007). Cancer diagnoses were
validated by medical record review and included 12 cases of colon cancer, 8 cases
of melanoma, and 22 cases of prostate cancer. No significant association between
these cancers and any of the PFOS-exposure categories was observed.
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12.2.4 Studies in a Community with PFOA-Contaminated
Drinking Water

The C8 Health Project, a cross-sectional survey and biomarker study in 2005 and
2006 among 69,030 residents of the mid-Ohio Valley, was conducted in response to
a legal settlement from a class-action lawsuit against DuPont (Frisbee et al. 2009).
The aim was to investigate the potential human health effects of PFOA exposure
from contaminated drinking water. Among the series of studies conducted to address
this aim, a cancer-registry based case-control study was reported assessing the rela-
tionship between PFOA exposure via drinking water and cancer in residents living
in the 6 water districts with contaminated drinking water and 13 adjacent counties
surrounding the DuPont Washington Works plant (Vieira et al. 2013). Data on inci-
dent cases of 18 types of cancer diagnosed from 1996 through 2005 in five Ohio and
eight West Virginia counties reported to the state cancer registries for Ghio and West
Virginia were used. The study included 7,869 cancer cases in Ohio and 17,238 can-
cer cases in West Virginia. Serum PFOA levels were estimated using combined
environmental, exposure, and pharmacokinetic models and were based on residen-
tial water district at the time of diagnosis (Shin et al. 2011). For comparative analy-
ses, the authors fit logistic regression models to estimate the adjusted odds ratio
(OR) for specific types of cancer cases using incident cancers from all other cancer
categories as controls after excluding cases of kidney, pancreatic, testicular, and
liver cancers. These cancer types were excluded from control groups due to the
previous reports of associations with PFOA.

A positive association was found between kidney cancer and either the high or
very high exposure categories with ORs of 2.0 (95 % CI: 1.3, 3.2) and 2.0 (95 % CI:
1.0, 3.9) for the high and very high categories, respectively. Among the nine cases
in the very high exposure group stratified by sex, the association was observed for
women (OR=3.5,95 % CI: 1.4, 8.3, six cases), but not for men (OR=1.0,95 % CI:
0.3, 3.4, three cases). For testicular cancer, there was a small number of cases over-
all n=18) with ORs above 1.0 reported for the very high exposure category
(OR=2.8,95 % CI: 0.8, 9.2, six cases) and the Little Hocking water district which
had the highest estimated exposure to PFOA (OR=35.1, 95 % CI: 1.6, 15.6, cight
cases). However, no exposure —response pattern was observed as the ORs for the
low to high exposure categories and the other water districts were all non-significant
and less than 1.0. Associations in the very high exposure group were also noted for
prostate, and ovarian cancers, and for non-Hodgkin’s lymphoma. The authors note
that the primary limitation to their study was the use of other cancer cases as control
subjects for comparative analyses. In addition, although the study included an area
with a population estimate of over 500,000 persons, precision of OR estimates was
limited due to small numbers of cases for specific cancer types following categori-
zation to exposure groups or assignment to specific water districts with varying
levels of PFOA exposure.

A second C8 Science Panel study involved a retrospective cohort design that
included 32,254 participants living in the mid-Ohio River Valley in one of the six
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water districts near the DuPont Washington Works plant (Barry et al. 2013). Of this
cohort, 3,713 had ever worked at the DuPont Washington Works facility. Among
these community residents and plant workers, 2,507 validated cancer cases com-
prising 21 different diagnostic types were observed. Cancer risk was analyzed based
on cumulative PFOA exposure estimated from residential history as described by
Shin et al. (2011) combined with additional occupational exposure estimates for
workers (Woskie et al. 2012). The authors fit a proportional hazards regression
model for each cancer type as the outcome and age at either diagnosis or last follow-
up as the time scale. HRs were estimated for time-varying cumulative exposure {o
PFOA calculated as the sum of yearly drinking water concentrations. PH models
were adjusted for sex, 5-year birth period, educational attainment, and time-depen-
dent measures of smoking and alcohol consumption.

In the combined cohort, positive associations were noted for testicular cancer
(HR=1.34, 95 % CI: 1.00, 1.79), kidney cancer (HR=1.10, 95 % CI: 0.98, 1.24),
and thyroid cancer (HR=1.10, 95 % CI: 0.95, 1.26). When analyzed by cumulative
exposure quartile, the HRs for 17 testicular cancer cases distributed by increasing
exposure quartiles were 1.0 (referent), 1.04 (95 % CI: 0.26, 4.22), 1.91 (95 % CL:
047, 7.75), and 3.17 (95 % CI: 0.75, 13.45), with significant trend tests reported
(p<0.05 for both trend tests). For the 105 kidney cancer cases, the HRs were 1.0
(veferent), 1.23 (95 % CI: 0.70, 2.17), 1.48 (95 % CI: 0.84, 2.60), and 1.58 (95 %
CI: 0.88, 2.84). For 86 thyroid cancer cases, the HRs were 1.0 (referent), 1.54 (95 %
CI:0.77,3.12), 1.48 (95 % CI: 0.74, 2.93), and 1.73 (95 % CI: 0.85, 3.54). However,
trend tests across quartiles based on increasing serum PFOA concentrations were
not significant for either kidney or thyroid cancers (p>0.10 for all tests).

Further, HRs for the 21 cancer types were stratified for community and occupa-
tional exposure groups (Barry et al. 2013 supplement). The numbers of cases and
HRs among 28,541 community members with no occupational exposure are shown
in Table 12.9 with the number of cases and HRs for the occupationally exposed
group listed in Table 12.10. Among community residents only, the HR for testicular
cancer was significantly increased (HR=1.73, 95 % CI: 1.24, 2.40, 15 cases) while
the HR for lung cancer was significantly decreased (HR =0.85, 95 % CI: 0.73, 1.00,
95 cases) for increasing cumulative PFOA exposure. Among those with occupa-
tional exposure to PFOA, thyroid cancer was significantly increased (HR=1.93,
95 % CI: 1.00, 3.71, 8 cases) and bladder cancer was significantly decreased
(HR=0.65, 95 % CI: 0.44, 0.95, 29 cases) for increasing cumulative exposure.

In a separate study of persons residing in six water districts in the mid-Ohio
River Valley with PFOA contamination, a health survey of 47,359 adults with one-
time serum PFOA and PFFOS measures taken from blood samples collected in 2005
and 2006 was conducted (Innes et al. 2014). There were 292 colorectal cancer cases
reported for this group, and the authors were able to confirm 208 cases by medical
record validation. The median serum PFOA concentration among all adults was
277.9 ppb considered to be elevated compared to general population levels due pri-
marily to exposure to contaminated drinking water. Meanwhile, the median serum
concentration of PFOS was 20.2 ppb which was considered similar to the general
U.S. population level at the time of serum sampling. The distribution of cases across
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Table 129 Effect of Cancer #Cases  HR (95 % CI)

estimated cumulative PEOA Bladder 76 0.96 (0.81, 1.14)

serum concentration on

cancer risk in the community Brain 13 1.14(0.78, 1.65)

group (n=28,541) Breast 546 0.96 (0.90, 1.02)
Cervical 21 0.94 (0.67, 1.32)
Colorectal 223 0.98 (0.89, 1.08)
Esophagus 12 1.00 (0.66, 1.51)
Kidney 37 1.14(0.99, 1.32)
Leukemia 53 0.92(0.76, 1.13)
Liver ] 0.62 (0.29, 1.29)
Lung 95 0.85 (0.73, 1.00)*
Lymphoma 121 1.05(0.92,1.19)
Melanoma 200 0.99 (0.89, 1.10)
Oral 17 0.96 (0.65, 1.40)
Ovarian 43 1.00(0.79,1.25)
Pancreatic 21 1.06 (0.79, 1.43)
Prostate 317 0.97 (0.90, 1.05)
Soft tissue 13 0.68 (0.40, 1.14)
Stomach 11 0.70 (040, 1.23)
Testicular 15 1.73 (1.24, 2.40y*
Thyroid 78 1.04 (0.89, 1.23)
Uterine 96 1.02(0.88,1.18)

From Barry et al. (2013) supplement
*Statistically significant (p <0.05)

quartiles of serum PFOA and PFOS concentration was evaluated. An inverse rela-
tionship was observed such that there were fewer cases of colorectal cancer reported
among those persons categorized to higher quartiles of serum PFOA and PFOS
concentrations. The fully adjusted ORs for PFOA serum concentration by quartile
were 1.0 (referent), 0.48 (95 % CI: 0.31, 0.75), 0.51 (95 % CI: 0.34, 0.77), and 0.64
(95 % CI: 0.44, 0.94) with a significant trend test (p=0.002), although the trend was
not significant when PFOA serum concentration was evaluated as a linear, continu-
ous variable (p=0.46). Moreover, a similar inverse relationship was observed for
higher serum PFOS concentrations. The fully adjusted ORs by quartile were 1.0
(referent), 0.38 (95 % CI: 0.25, 0.59), 0.27 (95 % CI: 0.17, 0.42), and 0.24 (95 %
CI: 0.16, 0.37) with significant trend test values for both categorical and linear tests
(p<0.00001). Among several limitations to this study, the authors note that the
study analyzed cross-sectional data that comprised measured PFOA concentrations
collected for prevalent colorectal cancer cases. This limits the ability to assess cau-
sality due to the absence of a temporal relationship between PFOA exposure and
colorectal cancer as both are determined simultaneously.
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Table 1210 Effect of Cancer # Cases  HR (95 % CI)
estimated cumulative PEOA Bladder 20 0,65 (0.4, 0.95)*
serum concentration on
cancer risk in the Brain 4 0.82 (0.26, 2.59)
occupational group Breast 13 1.01(0.59, 1.74)
(n=3,713) Cervical 1 -
Colorectal 41 1.12 (0.81, 1.54)
Esophagus 3 1.42(0.21,9.74)
Kidney 18 0.95 (0.59, 1.52)
Leukemia 13 1.30(0.73,2.33)
Liver 1 -
Lung 13 0.87 (0.51, 1.47)
Lymphoma 15 1.24 (0.72, 2.14)
Melanoma 41 0.80 (0.59, 1.08)
Oral 1 -
Ovarian 0 -
Pancreatic 3 0.98 (0.21, 4.65)
Prostate 129 0.94(0.77, 1.17)
Soft tissue 2 1.20 (0.30, 4.76)
Stomach 1 -
Testicular 2 0.85 (0.04, 19.7)
Thyroid 8 1.93 (1.00, 3.71)*
Uterine 7 1.05 (0.56, 1.97)

From Barry et al. (2013) supplement
*Statistically significant (p <0.05)

12.2.5 General Population Studies

A number of studies have reported on cancer outcomes in general populations and
related the finding to either PFOA or PIFOS. In the blood of a representative sam-
pling of individuals in the general population of the United States, four polyfluoro-
alkyl substances (PFOA, PFOS, perfluorchexane sulfonate-PFHxS, and
perfluorononanoate-PFNA) have been found in more than 95 % of those sampled in
the NHANES survey (Kato et al. 2011). The geometric mean serum concentrations
of each of these four chemicals are presented in Table 12.11. Attributing an associa-
tion between a cancer outcome and any one of these chemicals (or any of the other
chemicals contained in these blood samples) must be done carefully as it is obvious
from this data that multi-chemical exposures are occurring.

The association between plasma (serum) concentrations of PFOA and PFOS
with cancer risk was determined for a prospective Danish cohort of 57,053 partici-
pants with no previous cancer diagnosis at enrollment (Eriksen et al. 2009). From
1997 through 2006, 1,240 incident cancer cases were ascertained through the
Danish Cancer Registry. The study included 713 prostate cancer cases, 332 bladder
cancer cases, 128 pancreatic cancer cases, and 67 liver cancer cases. The PFOA and
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Table 12.11 Serum perfluorochemical concentrations in the general population (participants
>12 years old)

Geometric mean in ppb
Sampling wave 19992000 §2003-2004  {2005-2006 | 2007-2008 2009-2010

Chemical

PFOA 5.21 3.59 3.56 3.99 2.84
PFOS 30.40 19.43 15.61 13.19 8.76
PENA 0.56 0.88 1.01 1.46 1.49
PFHxS 2.30 1.90 1.55 1.93 1.51

Individual serum measurements not available in 2001-2002
Estimated from NHANES data based on Kato et al. (2011)

PFOS concentrations for these cases were compared to concentrations for a
representatively selected referent sub-cohort of 772 persons (668 men and 92
women) without a cancer diagnosis during the ascertainment period. The median
PFOA concentrations ranged from 5.4 to 6.9 ppb for the cancer groups with a
median concentration of 6.6 ppb for the comparison sub-cohort. For PFOS, median
concentrations for the cancer groups ranged from 31.0 to 36.8 ppb and the compari-
son sub-cohort had a median concentration of 34.3 ppb.

For prostate cancer, the adjusted incident rate ratios (RR) for quartiles 1 through
4 for PFOA were 1.00 (referent), 1.09 (95 % CI: 0.78, 1.53), 0.94 (95 % CI: 0.67,
1.32), and 1.18 (95 % CI: 0.84, 1.65), respectively. The same analyses for PFOS
estimated incident RRs of 1.00 (referent), 1.35 (95 % CI: 0.97, 1.87), 1.31 (95 % CI:
0.94, 1.82), and 1.38 (95 % CI: 0.99, 1.93), respectively. The authors note that the
lack of an increasing exposure-response trend suggests that the similar risk esti-
mates at higher PFOS concentration levels are likely due to a chance finding of a
lower incidence in the referent quartile rather than an increased risk with increasing
PFOS concentrations. The authors conclude that plasma concentrations of PFOA
and PFOS in the general Danish population do not appear to be associated with
increased risk of prostate, bladder, pancreatic, or liver cancer (Eriksen et al. 2009).

In a study of persistent organic pollutants (POPs) and breast cancer in an Inuit
population, 31 breast cancer cases were selected from a hospital registry in
Greenland and 115 control subjects without a cancer diagnosis were sampled from
an ongoing POPs monitoring study (Bonefeld-Jorgensen et al. 2011). Serum levels
of PFOA as well other perfluorinated carboxylates and sulfonates were reported at
higher concentrations for those with breast cancer relative to control subjects. The
median concentrations of PFOA were 2.5 ppb for breast cancer cases and 1.6 ppb
for control subjects. For PFOS, the median concentrations were 45.6 ppb among
breast cancer cases and 21.9 ppb for control subjects.

No significant association with breast cancer case status was observed for
increasing PFOA exposure while a significant association was reported for increas-
ing PFOS exposure. The raw (crude) OR for a 1 ppb increase in PFOA was 1.07
(95 % CI: 0.88, 1.31, 31 cases) while the raw OR for a 1 ppb increase in PFOS was
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1.01 (95 % CI: 1.00, 1.02). Fewer cases and controls were included in the adjusted
OR model due to missing data for the variables including age, body mass index,
pregnancy and breastfeeding history, serum cotinine and menopausal status. For
1 ppb increase in PFOA, the adjusted OR was 1.20 (95 % CI: 0.77, 1.88, 7 cases).
For a 1 ppb increase in PFOS, the adjusted OR was 1.03 (95 % CI: 1.00, 1.07). The
authors suggest that serum persistent organic pollutants including perfluorinated
compounds might be a risk factor for the development of breast cancer in this popu-
lation; however, the small number of cases and the high correlation between serum
PFAA levels limited the study.

In a case-control study of breast cancer among mothers enrolled in the Danish
National Birth Cohort from 1996 through 2002, 250 breast cancer cases that
occurred through 2010 were matched by age and parity to 233 control subjects
without a cancer diagnosis (Bonefeld-Jorgensen et al. 2014). Serum levels of 16
perfluoroalkylated substances (PFAS) including 10 carboxylates and 5 sulfonates
were measured for blood samples taken between the 6th and 14th week of preg-
nancy during enrollment. PFOA and PFOS concentrations were measured in all
study subjects and found at relatively higher concentrations than all other PFASs.
The mean serum levels reported for control subjects were 5.2 ppb for PFOA and
30.6 ppb for PFOS while serum concentrations for breast cancer cases are not
reported. In addition, the authors noted high correlations among the PFASs with a
significant correlation coefficient of 0.69 found between PFOA and PFOS
concentrations. No significant associations were observed between breast cancer
case status and PFOA and PFOS concentrations. Slightly fewer cases and controls
were included in the adjusted OR models due to missing data for other variables
including age at blood sampling, body mass index before pregnancy, gravidity, oral
contraceptive use, age at menarche, alcohol intake and smoking, maternal educa-
tion, and physical activity. The adjusted OR for a 1 ppb increase in PFOA was 1.00
(95 % CI: 0.90, 1.11, 221 cases) while the adjusted OR for a 1 ppb increase in PFOS
was 0.99 (95 % CI: 0.98, 1.01, 221 cases). The authors also categorized the expo-
sure distributions into quintiles and observed no pattern of increasing ORs for
higher levels of PFOA and PFOS when compared to the lowest quintile assigned as
the referent group. The adjusted OR for PFOA among women in the fifth quintile
(PFOA concentration greater than 6.53 ppb) was 0.94 (95 % CI: 0.51, 1.76, 40
cases) while the adjusted OR for PFOS in the highest quintile (PFOS concentration
greater than 39.07 ppb) was 0.90 (95 % CI: 0.47, 1.70, 35 cases) with no significant
ORs observed for other exposure quintiles. Moreover, the study subjects were strati-
fied by age at breast cancer diagnosis with analyses conducted for cases and matched
controls younger than 41 years of age at case diagnosis or older than 40 years of age
at case diagnosis. Similar results consistent with the overall analyses were observed
in both age strata for PFOA or PFOS. The authors conclude that the results of this
study indicate that there is no association between breast cancer occurrence and
PFAS concentrations taken during pregnancy.

A case control study in Sweden including 201 cases of prostate cancer compared
to 186 population-based controls was reported (Hardell et al. 2014). Serum concen-
trations of six perfluorinated carboxylates and sulfonates were measured with no
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significant differences reported between cases and controls for PFOA and PFFOS. The
median concentrations of PFOA were 2.0 ppb for prostate cancer cases and 1.9 ppb
for control subjects. For PFOS, the median concentrations for prostate cancer cases
were 9.0 ppb and 8.3 ppb for control subjects. There was no significant association
between prostate cancer and increased exposure defined as having a concentration
above the median for any PFAA reported in the study. The OR for having a PFOA
concentration above the median was 1.1 (95 % CI: 0.7, 1.7), while for PFOS, the
OR for exposure above the median was 1.0 (95 % CI: 0.6, 1.5).

The authors note that they expected heredity to be a risk factor for prostate cancer
with cases more likely to report having a first degree relative with prostate cancer
(OR=1.8,95 % CIL: 1.0, 3.1). After stratifying cases and controls by heredity defined
as having a first degree relative with prostate cancer and PFOA concentration above
the median, the ORs were 1.1 (95 % CI: 0.5, 2.6) for those with heredity and PFOA
less than the median, 1.0 (95 % CI: 0.6, 1.5) for those with no heredity and PFOA
greater than the median, and 2.6 (95 % CI: 1.2, 6.0) for those with heredity and
PFOA greater than the median, compared to a referent group of those without
hereditary prostate cancer and PFOA concentration less than the median. A statisti-
cal test for interaction between heredity and PFOA concentration greater than the
median was not significant (p=0.15). For PFOS, the ORs were 1.2 (95 % CI: 0.6,
2.5) for those with heredity and PFOS less than the median, 0.9 (95 % CIL: 0.5, 1.4)
for those with no heredity and PFOS greater than the median, and 2.7 (95 % CI: 1.0,
6.8) for those with heredity and PFOS greater than the median, compared to a
referent group of those without hereditary prostate cancer and PFOS concentration
less than the median. Hardell and colleagues conclude that higher concentrations of
PFOA and PFOS without hereditary prostate cancer did not increase the risk of
prostate cancer. They suggest that there is an interaction between genes and PFAA
exposure based on the observed increased risk for those with hereditary prostate
cancer; however, a possible mechanism for this interaction is unknown.

A cross-sectional study compared serum PFOA and PFOS concentrations in 40
cancer patients without a specific diagnostic type to two groups without cancer: 56
employees of a research center in urban Athens, Greece and 86 patients undergoing
medical checkups in rural Argolida, Greece (Vassiliadou et al. 2010). The mean
serum PFOA levels were 2.3 ppb in the cancer patients, 2.9 ppb in the Athens
employees, and 1.9 ppb in the Argolida patients. For PFOS, the mean serum levels
were 12.97 ppb in the cancer patients, 14.9 ppb in the urban employees, and 13.6 ppb
in the rural patients. Although the results demonstrate that PFASs are detectable in
the serum and liver samples from a series of patients with hepatocellular carcinoma
(HCC) and hepatitis C viral infection (HCV) as well as liver donors without existing
disease, the comparative results indicate no association between PFOA or PFOS
and cancer status. The study was limited for a number of reasons including the small
sample size, lack of specific cancer types, and no information on potential con-
founders, selection criteria or participation rates for the study population.

A study compared 66 diseased liver tissues removed prior to liver transplants to
25 healthy liver specimens in Melbourne, Australia (Yeung et al. 2014). Serum and
liver concentrations of PFOA and 11 other PFASs were measured. Cases included
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those who had undergone liver transplantation for a range of conditions including
hepatocellular carcinoma (HCC), cirrhosis due to chronic hepatitis C viral infection
(HCV), amyloidosis, and acute liver failure. Among those with HCC, serum
concentrations from 24 samples of PFOA were somewhat higher than those for 25
liver donor control samples with mean serum concentration of 2.82 ppb in HCC
patients compared to 2.38 ppb in controls; however, mean liver concentrations were
0.59 ppb (ng/g) and 0.62 ppb for these groups, respectively. For PFOS, the mean
sernm concentrations were 13.3 ppb for those with HCC and 8.48 ppb for controls.
Mean liver concentrations of PFOS were 6.24 ppb for HCC samples and 5.22 ppb
for controls. The authors suggest that some of the pathologic changes in diseased
livers might alter the distribution of PFASs between liver and serum. Overall, the
results do not suggest a relationship between PFASs and liver cancer. The study had
numerous limitations including a small sample size and the measurement of PFOA
and PFOS concentrations after liver specimen removal that preclude its ability to
test for an association between HCC and PFOA and PFOS concentrations.

12.3 Reviews and Evaluations

There have been a series of reviews of the carcinogenicity of PFOA. An EPA Draft
Risk Assessment (2005) reviewed both the animal and human evidence for a
possible relationship between PFOA exposure and cancer risk. Overall, based on no
adequate human studies and uncertain human relevance of the tumor triad from rat
studies, PFOA was described as having “suggestive evidence of carcinogenicity but
not sufficient to assess human carcinogenic potential” under the draft 1999
Guidelines for Carcinogenic Risk Assessment (U.S.EPA 1999). PFOA induces liver
tumors, pancreatic acinar cell tumors, and Leydig cell tumors in male rats. There is
sufficient evidence to indicate that PFOA is a PPAR« agonist and that liver carcino-
genicity and toxicity is mediated by binding to the PPAR« receptor in the liver. A
mode of action analysis demonstrated that the hepatic effects are due to PPAR«a
agonism and that this mode of action is unlikely to occur in humans. There is not
sufficient evidence to link the mode of action for both the pancreatic acinar cell
tumors and the Leydig cell tumors to PPARa. However, due to the quantitative dif-
ferences in the expressions of luteinizing hormone and cholecystokinin receptors
and other toxicodynamic differences between the rat and the human, tumors induced
in the rat by PFOA probably do not represent a significant cancer hazard for man.
A report from the Subcommittee on Classification of Carcinogenic Substances of
the Dutch Expert Comunittee on Occupational Safety of the Health Council (Health
Council of the Netherlands 2013) concludes that the available data on PFOA (and its
salts) are insufficient to evaluate the carcinogenic properties (Category 3 according
to the system of the Health Council of the Netherlands 2010). In reviewing the
human information, it was concluded that the available epidemiologic studies were
of varying quality with several having significant weaknesses. Several studies report
elevated risks for certain types of cancer but overall there was no cancer type that
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appeared to be consistently elevated in all studies. The report pointed out that kidney
cancer could be a concern as a slight elevation was reported in 2 of the 3 worker
cohort studies. With regard to the animal information, the report notes that none of
the three tumor types seen in the rodent studies were malignant tumors and that
benign tumor development in rodents may be explained in large part by peroxisome
proliferation. Thus, it was reported that these tumors appear to be rodent specific and
are unlikely to have relevance for liver, pancreatic, and testicular cancers in humans.

In a critical review, Chang et al. (2014) conclude that, taken together, the epide-
miologic evidence does not support the hypothesis of a causal association between
PFOA or PFOS exposure and cancer risk in humans. The review included the human
epidemiologic and animal toxicologic studies covered in this chapter. It is noted that
the majority of the relative risk estimates in these papers for both PFOA and PFOS
range between 0.5 and 2.0 with the confidence intervals including 1.0. Results sug-
gesting a positive association are counterbalanced by negative associations, no
apparent monotonic dose-response, and the lack of concurrence between the animal
and human findings. The authors conclude that many of the positive associations
reported for PFOA exposure in the community and general population studies were
not supported by studies of occupational exposures. Since occupational exposures
are often one to two orders of magnitude higher than environmental exposures, this
indicates that the positive associations in the community and general populations
studies are most likely due to chance, confounding, or bias.

On the basis of limited evidence in humans that PFOA causes testicular and renal
cancer, and limited evidence for cancer causality in experimental animals, an IARC
working group classified PFOA as possibly carcinogenic to humans (IARC group
2B). The IARC working group noted reports of increased risk of kidney cancer with
a statistically significant exposure-response trend in workers in a fluoropolymer
production plant in West Virginia, USA and in an exposed community near the plant
(Steenland and Woskie 2012; Vieira et al. 2013). In addition, there was an increase
of about threefold in the risk of testicular cancer reported in the most highly exposed
residents in communities near the same plant (Vieira et al. 2013; Barry et al. 2013).
However, the working group considered the evidence regarding mechanisms of
PFOA-associated carcinogenesis to be limited due to the inability to exclude chance
as an explanation for these findings (Benbrahim-Tallaa et al. 2014).

12.4 Conclusions

Overall, there have been a number of studies investigating cancer and exposure o
PFAAs, particularly PFOA. Historically, PFOA and PFOS have been the most
widely used members of this chemical class making these substances the subject of
the largest proportion of reported studies. Most persons in developed countries have
detectable serum concentrations of PFOA ranging from 1 to 10 ppb. PFOS has
similar environmental exposure conditions and has reported serum concentrations
in general populations that are somewhat higher than those for PFOA. Due to
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contaminated drinking water supplies near a DuPont fluoropolymer production
facility in West Virginia, residents of six neighboring water districts in West Virginia
and Ohio have mean serum concentrations that range from 10 to 300 ppb.
Additionally, occupationally exposed cohorts typically have serum concentrations
of PFOA and PFOS with an upper range of 3,500 ppb reported in some studies.

The toxicologic evidence for carcinogenicity of PFAAs is limited to four studies
evaluating the carcinogenic potential of PFOA (two studies), PFHxA (one study),
and PFOS (one study) in rats. Each of these chemicals produced a different response.
PFOA causes the tumor triad common to peroxisome-proliferating chemicals
including adenomas of the liver, pancreas, and testes. Rats exposed to PFOS
developed liver tumors, but a study of PFHxA reported no increase in tumors of any
type. Considerable research has been done to elucidate a potential carcinogenic
mechanism. There is evidence that the liver is the main target of PFOA exposure
due to activation of PPARa. This mechanism contributes to the induction of liver
tumors in rats. There is limited evidence that Leydig cell tumors may be induced by
a hormonal mechanism mediated by PPAR« activation. Thus, one needs to be
careful when predicting the presence or absence of carcinogenic activity for other
perfluorinated chemicals using the results from the available studies.

Epidemiologic studies have been reported for several levels of population
exposure. Limited evidence for associations with kidney and testicular cancer has
been reported by studies among community members exposed to drinking water
contaminated by PFOA. These associations are not consistently reported such that
random chance cannot be excluded as an explanation. Studies of workers exposed
to relatively higher levels of PFOA and PIFOS have not shown consistent evidence
for an association with any specific cancer type. More recent incidence studies
among workers from 3M (Raleigh et al. 2014) and DuPont (Barry et al. 2013 sup-
plement) did not report similar or strong associations with specific cancer types
including kidney or testicular cancers. Studies of specific tumor types among popu-
lations exposed to low levels of PFOA and PFOS have shown equivocal results for
a variety of specific cancer outcomes with no consistent associations reported.
Based on the evidence reported to date on PFOA and PFOS and considering the
relatively low and decreasing exposures to these compounds, the prospect for devel-
oping carcinogenic outcomes is remote. For other perfluorinated chemicals, there is
not sufficient evidence regarding their potential carcinogenicity, and human expo-
sures are low and appear to be decreasing.
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Chapter 13
Epidemiological Findings

Naila Khalil, Miryoung I.ee, and Kyle Steenland

Abstract Perfluoroalkyl and polyfluorcalkyl substances (PFAS) are man-made
compounds which have been extensively used over the past 60 years. They are
detectable globally in humans and animals. Among several PFAS compounds,
perfluorcoctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluoro-
hexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA) have been most
examined in epidemiological studies. In the United States PFOS is found at the
highest levels in human serum, followed by PFOA. Median human serum levels are
dropping for most PFAS in the US since phase out of production, but they are still
being used in manufacturing a variety of products. PFHxS has a much longer elimi-
nation half-life [geometric mean: GM (GM: 7.3 years)] than PFOS (GM: 4.8 years)
or PFOA (GM: 3.5 years).

Serum PFOA concentration has been linked with increased serum lipids, and uric
acid levels in occupational cohorts, a highly exposed community population, and
general population studies. PFAS exposure has also been associated with adverse
effects on thyroid homeostasis, liver enzymes, osteoarthritis, non-malignant kidney
disease, and immunotoxicity, in some studies but the associations are inconsistent.
Data are sparse but largely negative for Type 2 diabetes neurodegenerative disease,
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children’s cognition, adult CVD and siroke, immune function, liver disease, and
obesity. Despite a large body of literature, and some positive findings regarding low
birth weight, the data are overall inconsistent regarding reproductive/developmental
outcomes in relation to PFAS.

In conclusion current epidentiologic evidence suggests that there is an associa-
tion between PFOA and six health outcomes: high cholesterol, ulcerative colitis,
thyroid disease, testicular cancer, kidney cancer, and pregnancy-induced hyperten-
sion, although some of the findings come from only one large longitudinal study of
a high exposed population, and have not been replicated elsewhere. Data remains
limited for health effects of other PFAS. Longitudinal studies in populations with
exposure above general background levels are needed to corroborate these results
and increase our understanding of PFAS exposure and health outcomes.

Keywords Perfluoroalkyl « Polyfluoroalkyl substances (PFAS) ¢ Perfluorooctanoic
acid (PFOA) ¢ Perfluorooctane sulfonic acid (PFOS) ¢ Perfluorohexane sulfonate
(PFHxS) ¢ Perfluorononanoic acid (PFNA) » Epidemiology

13.1 Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are man-made chemicals.
PFAS were widely used over the past 60 years because of their heat stable, non-
flammable propertics. They are detectable globally in human, animal and aquatic
environments. PFAS can bioaccumulate and biomagnify through food chain.
Among several of the PFAS compounds, perfluorooctanoic acid (PFOA), perfluo-
rooctane sulfonic acid (PFOS), perfluorohexane sulfonate (PFHxS), and perfluo-
rononanoic acid (PFNA) have been addressed in epidemiological studies.

Over the past decade, the National Health and Nutrition Examination Survey
(NHANES) data in the US have shown that PFOS was the dominant PFAS in human
blood, followed by PFOA (Kato et al. 2011). PFHxXS has a much longer elimination
half-life [geometric mean: GM (GM: 7.3 years)] than PFOS (GM: 4.8 years) or
PFOA (GM: 3.5 years) (Olsen et al. 2007). As described in NHANES 1999-2008
data PFOS, PFOA, PFNA, and PFHxS were detected in >95 % of participants.
Since 19992000, PFOS concentration in US general population exhibited a signifi-
cant decreasing trend due to discontinued PIFOS industrial production, but PENA
concentration showed an upward trend. PFOA levels in 1999-2000 were signifi-
cantly higher that other surveys, but stabilized during 2003-2008. PFHxS concen-
trations exhibited a downward trend from 1999 to 2006, but increased in 2007-2008
(Kato et al. 2011).

Epidemiologic studies examining PFAS exposure on human health have been con-
ducted at three ‘exposure levels’: (1) occupational cohorts such as workers who were
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mostly exposed at the source of contamination, (2) highly exposed communities to
PFAS through water, soil, and/or air contamination, and (3) general populations such
as NHANES participants exposed to PFAS at background exposure level.

Occupational studies in workers employed at the PFAS chemical plants (Olsen
et al. 2003; Lundin et al. 2009) comprised of medical surveillance cross sectional
studies (reviewed in Costa et al. 2009) and a few longitudinal studies (Sakr et al.
2007b; Leonard et al. 2008; Shin et al. 2011). Costa et al. summarized health out-
comes of 30 years (1978-2007) of medical surveillance in PFOA exposed workers.
Workers aged 20-63 years had medical examination annually including blood tests
for serum chemistry and serum PFOA (Costa et al. 2009). The monitoring data and
its link with workers’ mortality and health effect have been published in a number
of epidemiological studies (Lundin et al. 2009; Costa et al. 2009; Sakr et al. 2007b;
Leonard et al. 2008; Shin et al. 201 1).

The most comprehensive epidemiological data linking PFOA exposure and
health outcomes has been reported from Mid-Ohio Valley communities which is
ongoing. The C8 Science Panel carried out exposure and health studies in resi-
dents potentially affected by the releases of PFOA (or C8) emitted since the 1950s
from the Washington Works plant in Parkersburg, West Virginia. Exposures to the
community started in 1951 and peaked in the early 1990s, due to contamination of
drinking water by PFOA emissions (Winquist et al. 2013; Simpson et al. 2013). In
2005-2006, as part of the settlement of a class action lawsuit, a community survey
called the C8 Health Project was conducted. In this survey, approximately 69,030
people who lived in one of six contaminated water districts in West Virginia and
Ohio between 1951 and 2004 were surveyed and information regarding demo-
graphics, residential history, medical history, and health-related behaviors was
collected. These participants were grouped into two cohorts based on their occu-
pational exposure (worker cohort, n=6,000) at the chemical plant or residential
exposure (community cohort, n=40, 000) to drinking water contaminated with
PFOA. The summarized evidence and technical conclusion of these studies are
publicly available in the form of non-peer reviewed Probable Link reports (www.
c8sciencepanel.org).

In this chapter, we will review evidence between PFAS exposure and risk of
adverse human health outcomes, each outcome has a separate section and epidemio-
logical evidence is presented in separate studies segment as cross sectional or lon-
gitudinal studies (where available) and within each section occupational or
population studies are discussed. Association between PFAS and cancer is not dis-
cussed as it is addressed in a separate chapter of this book.

13.2 Lipids

Epidemiologic studies have shown that environmental PFAS exposure may have
an important role in elevating serum lipid (hypercholesterolemia), although find-
ings have not been uniform (Frisbee et al. 2010; Sakr et al. 2007a, b; Lin et al.
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2009, 2013; Olsen and Zobel 2007; Emmett et al. 2006; Steenland et al. 2009;
Nelson et al. 2010).

Cross-sectional The inconsistent positive relationships between environmental
PFAS exposure, in particular PFOA, and lipid and lipoproteins levels were reported
in many cross-sectional studies even though the magnitudes of effect varied by stud-
ies. In occupational cohorts, positive associations have been observed between
PFOA and total cholesterol (Sakr et al. 2007a, b), low-density lipoprotein choles-
terol (LDL-C) (Lin et al. 2013) and triglycerides (Olsen and Zobel 2007). Two epi-
demiologic studies conducted on a highly exposed community yielded dissimilar
results, with Emmett et al. reporting no association (n=371) (Emmett et al. 2006),
and Steenland et al. reporting a positive association between PFOA and total cho-
lesterol, LDL-C and triglycerides (n=46,294) (Steenland et al. 2009).

Studies on general populations report more positive associations between
PFAS concentrations in blood and lipids than in studies on occupational cohorts
or highly exposed communities. Using the data from NHANES 2003-2004,
Nelson et al. reported positive associations between PFOA and PFOS exposure
and total cholesterol and non high density lipoprotein cholesterol (HDL-C) in a
general population sample of adults (Nelson et al. 2010). A Canadian study did
not show significant evidence to support the association of cholesterol outcomes
with PFOS and PFOA exposure. However, several significant positive associa-
tions with the PFHxS and cholesterol outcomes were noted (Fisher et al. 2013). In
this study using cross-sectional data in adults from the Canadian Health Measures
Survey (2007-2009), the associations between plasma levels of PFOA, PFOS and
PFHxS and cholesterol were assessed. Evidence of significant positive associa-
tions between PFHxS, with total cholesterol, LDL-C, TC/HDL-C and non-HDL.-
C as well as elevated odds of hypercholesterolemia was noted (Fisher et al. 2013).
A Danish cross-sectional study of middle aged adults described significant posi-
tive associations between both PFOS and PFOA and total cholesterol (Eriksen
et al. 2013).

A previous study in children and adolescents had reported positive associations
between PFAS and abnormal lipid levels in the C8 community cohort (Frisbee et al.
2010). In a study of adolescents (age <18 years) from NHANES 19992008, Geiger
et al. (2014) identified positive relationships of exposure to PFOA and PFOS with
high total cholesterol and LDL-C levels (Geiger et al. 2014). Compared to children
in quartile 1 (reference), the adjusted odds ratios (ORs) and 95 % confidence inter-
val (CI) for high total cholesterol among children in quartile 4 was 1.16 (1.05-2.12)
for PFOA and 1.53 (1.11-1.64) for PFOS. PFOA and PFOS were not significantly
associated with abnormal HDL-C and triglyceride levels.

Longitudinal Longitudinal studies on health effects PFAS on lipids are scarce. A C8
short term follow-up study on C8 community cohort (n=560) without taking any
lipid lowering medications showed interesting results between relationships between
changes in PFAS and change in lipids (Fitz-Simon et al. 2013). While large decrease
(~50 %) in serum PFOA and PFOS levels over a 4.4 follow-up year was noted, mean
increase in LDL-C (1.8 % increase) and other lipids was minimal. Interestingly,
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authors found that greater decreases in PFOA and in PFOS were associated with
greater decreases in LDL-C levels, 3.6 % (1.5-5.7 %) for PFOA reduction in 50 %
and 5.0 % (2.5-7.4 %) for PFOS reduction in 50 %, respectively. This tendency was
significant but less prominent in the relationship between the decrease in total cho-
lesterol and PFOA (e.g., predicted 1.7 % decrease per halving PFOA). This result
renders some support that PFOA and PFOS may cause the reversible elevation of
lipids, especially LDL-C.

In longitudinal analyses of worker and community cohorts (n=32,254), the C8
Science Panel found a ‘probable link’ between incidence of hypercholesterolemia
(n1=9,909) and PFOA (Winquist and Steenland 2014a). In a principal retrospective
analysis, hazard ratios (HR) of hypercholesterolemia, defined as subjects taking
medications, were significantly higher in estimated cumulative PFOA exposure
quintiles from 2 to 5 compared to quintile 1. Participants in C8 Health Project in
upper quintile groups of cumulative exposure had between 1.17 and 1.24 times
higher hazards of having hypercholesterolemia compared with participants in the
lowest quintile (Winquist and Steenland 2014a). However, a short-term follow-up
(164 days) study of workers (n=179) who involved in the demolition projects of 3M
plants in Minnesota (medical surveillance study) showed no association between
changes in serum PFOA concentrations and changes in TC levels (Olsen et al.
2012). Only significant positive associations noted in this study were between
changes in PFOA and changes in TC/HDL-C in a sub-sample with low baseline
PFOA levels (<15 ng/ml) (Olsen et al. 2012).

Conclusion Many epidemiologic studies on health effects of PFAS were cross-
sectional in nature, which preclude conclusions about causality. Reverse causality is
also possible: higher lipid levels may cause the increase in PFAS levels measured in
blood samples. Alternatively, possible unknown confounders cause changes in both
PFAS levels and lipid levels. Further, caution must be taken to interpret results for
studies on general population with relatively low homogenous exposure, which may
not correspond with those from occupational cohorts and from highly-exposed
communities. However, despite these caveats, epidemiologic evidence, in particular
from the longitudinal analysis of C8 Health Project, suggests that there is an asso-
ciation between PFOA and PFOS and adverse lipid profiles, and further that high
PFOA exposure may increase the risk of incident hypercholesterolemia in adults.

13.3 UricAcid

Uric acid is a metabolite of purine breakdown and is a renal function biomarker.
Elevated uric acid is associated with risk of hypertension, diabetes mellitus (Bandaru
and Shankar 2011), cardiovascular discase, and kidney disease (Cain et al. 2010)
(reviewed in (Geiger et al. 2013)).

Cross Sectional In a cross sectional analysis of the same occupational cohort Costa
et al. (2009) described mean uric acid levels of 6.29 pg/mL for 34 currently exposed
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workers, versus 5.73 pg/mL for 34 matched non-exposed workers (p=0.04)
(reviewed in (Steenland et al. 2010a)). In a cross-sectional community study of C8
adult population Steenland et al. (2010b) reported a positive association between
PFOA, PFOS and uric acid among 54,951 highly-exposed community residents
(Steenland et al. 2010b). For PFOA, the OR of hyperuricemia increased modestly
with increasing serum concentration of PFOA. A less steep trend for PFOS was
observed (Steenland et al. 2010b). When PFOS and PFOA were included in the
model together PFOA was a more significant predictor than PFOS. However cross
sectional study design and possibility of reverse causality, prohibit inference of
cause effect relationship.

In a cross sectional NHAAES survey 1999-2006 of the US general population
(n=3,883) a positive relationship between serum levels of PFOS and PFOA and
serum uric acid was documented. This demonstrates that even at low PFAS expo-
sure levels observed in the US general population, PFAS are associated with hyper-
uricemia (Shankar et al. 2011b). Additionally, evidence regarding a positive
association between PFAS and hyperuricemia in children is emerging. As described
in a cross-sectional NHNAES 1999-2008 survey a positive association between
serum PFOA and PFOS levels and hyperuricemia (>6 mg/dL) was seen in 1, 772
US children (Geiger et al. 2013).

Longitudinal In a longitudinal study of occupationally exposed workers (n=356),
Costa et al. (2009) found a positive association between uric acid and PFOA by
using repeated measures of both PFOA and uric acid over a 7-year follow up.

Conclusion Limited evidence supports an association between hyperuricemia and
PFAS, although the only data are available come from cross-sectional studies, which
cannot provide evidence of causality.

13.4 Kidney Disease

Kidneys are an important target organ for PFAS; PFAS are stored and excreted
there.

Cross-sectional Previous studies of occupational cohorts or communities highly
exposed to PFOA did not find an association between serum PFOA concentrations
and blood urea nitrogen or serum creatinine, markers of kidney damage, (Costa et al.
2009; Emmett et al. 2006). Cross-sectional NHANES 1999-2008 data showed positive
relationship between serum levels of PFOS and PFOA and chronic kidney disease
(CKD) in 4,587 adults (Shankar et al. 2011a). Because of the cross-sectional nature of
NHANES survey authors could not conclude if high levels of PFOA and PFOS in
serum preceded CKD or vice versa. In another cross sectional study association
between estimated renal glomerular filtration rate (¢GIR), a marker of kidney func-
tion, and serum PFASs in 9,660 children 1 to <18 years of age was studied (Watkins
et al. 2013). The concurrent and historical seram PFOA concentrations were predicted
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using an environmental exposure, and pharmacokinetic model utilizing residential
history. It was hypothesized that predicted serum PFOA levels would be less prone to
reverse causation than measured levels. Measured serum levels of PFOA, PFOS,
PFNA, and PFHxS were associated with decreased eGFR (Watkins et al. 2013).
However modeled serum PFOA was not associated with decreased eGEFR.

Longitudinal In longitudinal unpublished analyses of the highly exposed mid-Ohio
valley population, the C8 Science Panel found no ‘probable link’ between medi-
cally confirmed kidney disease (n= 350, 308) and PFOA (C8 Science Panel 2012¢).
In longitudinal mortality study of 6,027 highly exposed workers, Steenland and
Woskie (2012) reported a higher kidney disease related mortality in PFOA workers
compared to other workers in the plant; exposure response trend was also significant
(Woskie et al. 2012).

Conclusion Evidence linking chronic kidney disease to PFAS exposure is limited
and inconsistent. The observed cross-sectional positive association between eGFR
and serum PFOA in C8 populations may be a consequence rather than a cause of
decreased renal function. Longitudinal are sparse and inconsistent.

13.5 Heart Disease and Hypertension

Experimental studies have revealed that PFAS exposure is related to oxidative stress
(Liu et al. 2007) and endothelial dysfunction (Qian et al. 2010), which are regarded
subclinical antecedents to cardiovascular pathology. Although health effects of
PFAS were inconsistent at different exposure levels, PFOA, PFOS and/or PFNA
have been positively linked to total cholesterol and LDL-C levels (Starling et al.
2014; Winquist and Steenland 2014a), hyperuricemia (Steenland et al. 2010b;
Shankar et al. 2011b; Geiger et al. 2013), altered glucose homeostasis (Lin et al.
2009; Lind et al. 2014), which are putative CVD risk factors. These results provide
some epidemiologic evidence that PFAS exposure may play a role in the develop-
ment of coronary heart disease (CHD).

Cross-sectional There are two conflicting reports on PFOA exposure and CHD
prevalence on U.S. general population (Melzer et al. 2010; Shankar et al. 2012).
Among 3,974 adults aged over 20 years in the NHANES 1999-2000 and 2003-
2006, weighted CHD prevalence was 5.8 % (n=321, unweighted). Across quartile
groups using sex-specific cutoff s for PFOA and PFOS concentration, there were
no significant increases in odds of reporting CHD in this study. Among 1,216
adults aged over 40 years (NHANES 1999-2003), however, Shankar et al. (2012)
reported that the exposure to PFOA was positively associated with risk of self-
reported CVD including CHD, heart attack, or stroke, and objectively measured
peripheral artery disease (PAD). Reported weighted prevalence of CVD and PAD
was 13.0 % and 4.5 %, respectively. Compared with participants in quartile 1 in
serum PFOA levels (<2.9 ng/ml for women and <3.0 ng/ml for men), participants
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in quartile 4 (>5.6 ng/ml for women and >6.1 ng/ml for men) had 2.01 times
(95 % CI; 1.12-3.60) higher odds of reporting CVD and 1.78 (1.03-3.08) time
higher odds of having PAD. Authors also reported that the adjusted OR in quartile
4 was 2.24 (1.02-4.94) for reporting specifically CHD compared to the quartile 1
(p-trend =0.007) (Shankar et al. 2012).

There were two cross-sectional studies on general population examining the
PFOA on hypertension or blood pressure levels (Geiger et al. 2014; Min et al. 2012).
A cross-sectional study reported an association between PFOA exposure and hyper-
tension in 2,934 US adults from 2003-2004 and 2005-2006 NHANES (Min et al.
2012). In the adjusted analysis on participants in quartiles for PFOA levels, odds of
having hypertension was significant increased (p for tend =0.001):1.21 (0.86-1.70)
for quartile 2, 1.60 (1.15-2.22) for quartile 3, and 1.71 (1.23-2.36) for quartile 4.
Using NHANES data from 1999-2000 and 2003-2008, Geiger et al. (2014) reported
no association between PFOA and PFOS exposure and hypertension in 1,655 chil-
dren aged 18 years old in general US population (Geiger et al. 2014). Weighted
hypertension prevalence was 23.4 % in this study.

Longitudinal Mortality studies on occupational cohorts reported no significant
positive associations between PFOA exposure and CHD (Leonard et al. 2008;
Lundin et al. 2009; Sakr et al. 2009; Steenland and Woskie 2012). Based on an
occupational cohort (n=3,922) at 3M plant in Cottage Grove, Minnesota exposed to
PFOA, Lundin et al. reported no significant SMR (standardized mortality ratio)
trend across three groups according to job category for PFOA exposure levels.
SMRs (95 % CI) for non-exposed workers (n=1,792) was 0.7 (0.6-0.9, 92 deaths),
for probably exposed workers (n=1,688) was 0.8 (0.7-1.0, 93 deaths), and for defi-
nitely exposed (n=512) workers was 0.8 (0.5-1.4, 16 deaths). The CHD SMRs
were generally lower than that of the general population in MN. CHD specific mor-
tality rate ratios by characterizing the workers by job classification or cumulative
exposure years yielded no significant association (Lundin et al. 2009). Based on
data collected on 6,027 workers at DuPont plant in West Virginia, Leonard et al.
reported no significant increase in ischemic heart disease (IHD) mortality of work-
ers in comparison with U.S. population, the West Virginia and §-state DuPont
employee population (Leonard et al. 2008). Again, Sakr et al. reported there was no
dose-response relationship between the cumulative exposure of serum PFOA and
CHD mortality based on the same cohort (n=4,747) with 239 reported IHD deaths
(Sakr et al. 2009). C8 Scientific Panel conducted another study on this occupational
cohort (i.e., C8 worker cohort) at DuPont plant (Steenland and Woskie 2012).
Among 5,791 workers, camulative serum PFOA based on eight job category was
estimated (Woskie et al. 2012) and cause-specific mortality was documented. There
was no significant increase in SMRs (287 deaths) compared with that of US general
population [SMR (95 % CID) 0.68, (0.60-0.77)] or other DuPont workers [0.97
(0.86-1.09)] in the analysis using a no-lag. The results were similar in the analysis
using 10-year lag (Steenland and Woskie 2012).

In longitudinal analyses of worker and community cohorts (n=32,254), a recent
report found no association between medically confirmed CAD such as heart attack
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or angina or self-reported medicated hypertension and PFOA (Winguist and
Steenland 2014a). In the primary retrospective for hypertension (n=11,798) and
CAD (n=2,468), there were no significant trends in increase in HRs for either for
hypertension and CAD in higher quintiles of cumulative exposure serum PFOA
compared to quintile 1. Reported HRs (95 % CI) for CAD by increasing quintile
were 1.00 (referent), 1.26 (1.10-1.45), 1.17 (1.02-1.35), 0.99 (0.86-1.14), and 1.07
(0.93-1.23) (Winquist and Steenland 2014a). Prospective analyses